Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжение заряда химического источника тока

    Различают напряжение разряда химического источника тока 7р и напряжение заряда /з. [c.102]

    Величинами, характеризующими эти кривые, служат начальное, конечное и среднее напряжения, а также отношение начального напряжения к конечному. Под начальным напряжением i/ понимают иапряжение химического источника тока, измеренное через несколько секунд после включения источника тока в цепь. Конечным напряжением Us называют ту величину напряжения, до которой производят разряд или заряд химического источника тока. Среднее напряжение определяется графически или аналитически по кривым U = f(t), или как среднее арифметическое из п значений U, измеренных через равные промежутки времени  [c.103]


    На кривых, характеризующих изменение напряжения при заряде аккумуляторов, соответственно наблюдаются две площадки при 1,6—1,64 и 1,9—2,0 В (рис. 173). При разряде аккумуляторов также наблюдаются две площадки, но при повышенных плотностях тока площадка, соответствующая более высокому напряжению, так мала, что практически весь разряд протекает при одном напряжении. Разряд систе- -йл мы оксид серебра — цинк протекает обычно без затруднений, но при заряде иногда встречаются осложнения, поэтому систему АдгО—(КОН)—2п часто используют в химических источниках тока одноразового действия. [c.405]

    Таким образом, по форме напряжения на зажимах химического источника тока можно качественно оценить характер его внутреннего сопротивления. В некоторых случаях, однако, этот метод дает возможность непосредственно из осциллограммы вычислить все составляющие внутреннего сопротивления химического источника тока. Это можно сделать, когда емкостное сопротивление не очень сильно отличается по величине от шунтирующего сопротивления гг (рис. 25,6), путем подбора такой частоты следования импульсов, при которой заряд и разряд емкости будет полностью заканчиваться за время полупериода. [c.85]

    Из формулы (39) следует, что напряжение заряда больше э. д. с. на величину падения напряжения при разряде химического источника тока. [c.103]

    Аккумуляторами могут служить только такие химические источники электрического тока, основные процессы в которых протекают обратимо. Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока необходимого напряжения от внешнего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным тому, которое имелось при разряде на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном — реакция восстановления за- [c.484]

    Второй вопрос, возникший при создании вольтова столба, — это вопрос о причинах возникновения электрического тока и источнике электрической энергии. Согласно представлениям А. Вольта, электрическая энергия в гальваническом элементе возникает в результате контакта двух различных металлов (так называемая контактная теория э. д. с.). Основанием этой теории послужило следующее явление. Если два различных металла привести в соприкосновение, а затем раздвинуть, то при помощи электроскопа можно обнаружить, что один металл приобрел положительный, а другой — отрицательный заряд. Ряд металлов, в котором каждый предшествующий металл заряжается положительно после контакта с последующим (ряд Вольта), оказался до некоторой степени аналогичным ряду напряжений. Отсюда А. Вольта сделал вывод, что э. д. с. гальванического элемента обусловлена только контактной разностью потенциалов. Однако теория Вольта не объясняла полностью явлений возникновения электрической энергии при работе гальванического элемента, так как даже при длительном протекании тока граница соприкосновения двух металлов не изменялась. А. Вольта считал, что гальванические элементы представляют собой вечные двигатели.. Экспериментальная проверка не подтвердила этого предположения, и после установления закона сохранения энергии для объяснения э. д. с. гальванических элементов была выдвинута химическая теория, согласно которой источником электрической энергии является энергия химической реакции, протекающей в гальваническом элементе. [c.10]


    Параллельный сдвиг обусловлен изменением отношения интенсивностей линий, которое происходит в плазме источника света или вследствие некоторых оптических эффектов, например в спектрографе. При предположительно одинаковых условиях возбуждения изменения интенсивности излучения могут быть обусловлены атмосферными эффектами. Например, влажность или другие параметры воздуха могут воздействовать на химические процессы, происходящие на электродах, или непосредственно влиять на излучение плазмы. Изменение отношения интенсивностей вызвано главным образом оптическими и спектральными причинами. Поверхности оптических элементов приобретают электрический заряд вследствие заметной напряженности электрического поля, создаваемой при высоковольтном возбуждении, а также из-за высокочастотной утечки, емкостных и индуктивных токов. Поэтому частицы пыли, взвешенные в воздухе и обладающие относительно большой влажностью, или даже пары воды осаждаются на этих поверхностях в виде моно-молекулярного или очень тонкого слоя. В этом слое, состоящем из очень мелких частиц, происходит интерференция или рассеяние света, влияние которых зависит от длины волны. По этой причине заметно именяется отношение интенсивностей тех линий, для которых разность длин волн велика. [c.81]

    Химические источники электрической энергии бывают одноразового и многократного действия. ХИЭЭ одноразового использования называются первичными элементами, а многократного действия вторичными элементами или аккумуляторами. ИногДа первичные элементы называют просто элементами или гальваническими элементами . Аккумуляторами могут служить только такие химические источники электрической энергии, основные процессы в которых протекают обратимо. Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока от постороннего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным имевшемуся при разряде, на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном электроде реакция восстановления заменяется реакцией окисления. Таким образом, в аккумуляторах запас химической энергии, истраченной на получение электричес1 ой энергии при разряде, возобновляется при заряде. Так как напряжение одного отдельного первичного элемента или аккумулятора очень невелико — они в большинстве случаев применяются последовательно соединенными по несколько штук. В таком виде ХИЭЭ называют батареей . [c.464]

    Э. д. с. и напряжение при разряде [5]. Важными характеристиками ХИЭЭ являются их электродвижущая сила, т. е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи, и напряжение химического источника электрической энергии при его работе, т. е. при замкнутой внешней цепи. Различают начальное, конечное и среднее напряжения при разряде (или заряде). [c.419]


Смотреть страницы где упоминается термин Напряжение заряда химического источника тока: [c.478]    [c.9]    [c.212]    [c.8]    [c.8]    [c.8]    [c.73]   
Химические источники тока (1948) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Источники тока

Источники тока химические

Напряжение заряда

Напряжение химическое

Химический источники тока Источники тока



© 2025 chem21.info Реклама на сайте