Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циркония оксид определение кислорода

    Определение кислорода заметно усложняется, когда необходимо контролировать его содержание в горячих газах. Охлаждение горячих газов и анализ их в нормальных условиях создает дополнительную погрешность за счет нарушения равновесия между компонентами газовой фазы и жидкости (конденсация ее паров). Для определения кислорода в горячих газах применяют твердоэлектролитные ПИП [712]. В основе метода лежит свойство стабилизированного оксидов циркония или тория проводить электрический ток при 700- 1200°С. Высокотемпературная ячейка такого типа представляет собой полую металлокерамическую трубку, на внешней и внутренней сторонах которой расположены два пористых электрода. Один из них омывается газом с известным парциальным давлением Ог (например, воздухом), а другой — анализируемым газом. Электрический сигнал с электродов в такой системе формируется за счет образования гальванической пары. Сигнал пропорционален логарифму отношений парциальных давлений кислорода. Одна из серьезных проблем в ПИП такого типа — трудность обеспечения хорошего контакта электродов с твердым электролитом в течение длительного времени работы при высоких температурах [c.104]


    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    При выборе оптимальных условий выполнения анализа прежде всего стремятся выполнить два требования снижение предела обнаружения определяемых элементов и обеспечение высокой надежности результатов определения. При выборе способа атомизации остановимся на пламени, которое до сих пор остается удобным, стабильным и экономичным способом получения атомных паров. В течение многих лет практически в любом атомно-абсорбционном спектрометре применяли воздушно-аце-тиленовое пламя с предварительным смешением и горелкой камерного типа с щелевой насадкой. И в настоящее время это пламя успешно применяют для определения содержания большинства элементов, не образующих термостойких оксидов. Воздушно-ацетиленовое пламя непригодно для определения металлов с энергией связи металл — кислород выше 5 эВ, например алюминия, тантала, титана, циркония, энергия связи которых соответственно равна 5,98 эВ, 8,4 эВ, 6,9 эВ, 7,8 эВ [311]. Это объясняется необходимостью более высоких температур пламени для элементов с высокой температурой парообразования. Более высокие температуры можно получить при горении смеси кислород — водород и ацетилен — кислород, но эти смеси имеют высокую скорость горения и трудно поддаются контролю. Поэтому предложенная Виллисом [320] смесь оксид азота(I) — ацетилен сразу получила широкое признание, поскольку наряду с высокой температурой она обладает низкой скоростью распространения пламени [321] и тем самым более безопасна в работе, чем смеси с кислородом. [c.112]


    Для получения пламени используют различные комбинации горючих газов с окислителями, например, водорода, пропана или ацетилена с воздухом или оксидом азота. В практике атомно-абсорбционного анализа чаще всего применяют воздушноацетиленовое пламя. Его используют для определения щелочных и щелочно-земельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. В воздушно-ацетиленовом пламени нельзя определять (слишком высокая энергия связи металл-кислород) алюминий, тантал, титан, цирконий и др. [c.236]

    Хлорирование использовали для разложения силицидов ферромолибдена и молибдена [5.1764], сплавов алюминия с кремнием [5.1765], кальция с кремнием [5.1766] и технического кремния [5.1767], для определения оксидов в титане [5.1768] и цирконии [5.1769], а также SiOj и Si в феррокремнии [5.1770]. К сожалению, точность метода не высокая, что частично вызвано такими примесями, как карбиды титана и циркония, которые способствуют разложению стойких оксидов (хотя карбид кремния не реагирует с хлором даже при высоких температурах). Кроме того, хлор должен быть высокой чистоты, в нем не должно быть примеси воды и кислорода. Для выделения кремния из остатка AI2O3— [c.258]

    Немецкий химик. Р. во Фрейберге. Учился (1857—1859) во Фрайбергской горной акад. и Лейпцигском ун-те (докт. философии, 1864). С 1859 работал на хим. з-дах. В 1873—1902 проф. Фрейбаргской горной акад. (в 1896—1899 ректор). Осн. работы посвящены неорг. и аналит. химии. Разработал способ определения гидроксида натрия в присутствии карбонатов щел. металлов, При исследовании минерала аргиродита обнаружил (1886) новый элем., который назвал германием (существование этого элем.— эка-силиция — было предсказано в 1870 Д. И. Менделеевым). Разработал (1875) пром. способ получения серного ангидрида (оксида серы VI) нагреванием смеси сернистого газа (оксида серы IV) и кислорода в присутствии платинированного асбеста, чем было положено начало контактному способу произ-ва серной к-ты. Получил (1891) гидриды бериллия, магния, кальция, бария, церия, циркония и тория восстановлением их кислородных соед. магнием в атмосфере водорода. Предложил (1899) электрод в виде свернутой в цилиндр сетки. [c.96]


Смотреть страницы где упоминается термин Циркония оксид определение кислорода: [c.254]   
Методы разложения в аналитической химии (1984) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород в оксидах

Кислород определение

Оксиды определение кислорода

Циркония оксиды



© 2025 chem21.info Реклама на сайте