Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксилатные каучуки структура

    Ненаполненные резины на основе карбоксилатных каучуков обнаруживают высокую прочность и эластичность, подобно вулканизатам натурального каучука. Это объясняется особенностями структуры вулканизата, полученного с помощью окислов металлов, за счет солеобразования, так как карбоксилатные каучуки по своей структуре по существу не отличаются от структуры обычных полимеров ввиду малого содержания карбоксильных групп. [c.109]


    Образование слабых вулканизационных связей и их влияние на прочностные свойства особенно заметно при вулканизации каучуков по функциональным группам [98, с. 196, 335, 374 102, с. 75—115]. Наиболее подробно исследованы структура и свойства металлоксидных вулканизатов карбоксилатных каучуков, а полученные [c.55]

    Эластомеры, в цепи которых содержатся функциональные группы (как карбоксильная у карбоксилатных каучуков, пиридиновая у бутадиен-винилпиридиновых каучуков, нитрильная у бутадиен-нитрильных каучуков и т. п.), способны к тем химическим реакциям, которые характерны для низкомолекулярных соединении с этими же функциональными группами. Если функциональные группы в цепи полимера оказываются достаточно сближенными, то возможны реакции образования внутримолекулярных циклических структур. [c.139]

    Обычные для диеновых каучуков наполнители, например технический углерод, не являются усилителями для металлоксидных вулканизатов карбоксилатных каучуков. Усиление обусловлено уже формированием вулканизационной структуры, так как вулканизационные узлы являются частицами усиливающего наполнителя. Поэтому введение технического углерода равноценно использованию больших количеств усиливающего наполнителя, когда улучшения физико-механических свойств уже не наблюдается. Точно так же введение усиливающего технического углерода не улучшает прочностных свойств бутадиен-стирольных термоэластопластов. [c.341]

    Бутадиеновый карбоксилатный каучук имеет следующую примерную структуру макромолекул  [c.391]

    Для второго эксперимента [878 ] был выбран бутадиен-стирольный карбоксилатный каучук, обладающий совместимостью с ПЭ и способностью образовывать комплексные соли с двухвалентными металлами (2пО, MgO). Механосинтез проводили в лабораторном экструдере при 170—210 °С. Конверсию ПЭ и структуру модифицированного полимера изучали методами избирательной экстракции, дифракции рентгеновских лучей, ИКС и ЯМР. Введение 5 % каучука повышает плотность исходного ПЭ и способствует формированию более совершенной и мелкодисперсной кристаллической структуры. Увеличение содержания модифицирующей добавки снижает кристалличность полимера (по данным ЯМР). Варьируя количество каучука и окиси и проводя процесс при оптимальных температурах, можно получить материал с улучшенными механическими и деформационными характеристиками. Структурная модификация ПЭ улучшает также его реологические свойства, стойкость к термоокислительной деструкции и сопротивление "старению (табл. 5.15). [c.188]


    Металлооксидные вулканизаты при 20 °С растворяются в растворителях, не вступающих в химические реакции с каучуком или вулканизационными структурами [62— 67]. В растворенном каучуке, судя по ИК-спектрам, сохраняются солевые связи того же типа, что и в исходном вулканизате (средние, а не основные соли). Следовательно, в карбоксилатных каучуках образуются преимущественно внутримолекулярные соли. Их образование облегчается тем, что из-за большого различия в константах сополимеризации метакриловой кислоты и других мономеров при синтезе сополимера весьма вероятно образование в полимерной цепи микроблоков метакриловых звеньев. [c.160]

    Существенно, что после испаренич растворителя вулканизационная структура восстанавливается, а пленки, полученные из раствора, имеют такие же физико-механические свойства, как и исходные вулканизаты [67]. Вулканизационная структура при этом образуется в результате межмолекулярного взаимодействия полярных солевых групп. Физический характер этого взаимодействия подтверждается тем, что вулканизацию карбоксилатных каучуков можно провести и гидроксидами одновалентных металлов [61 68]. Соединение групп —СООНа и —СООЫ в устойчивые при комнатной температуре агрегаты было показано экспериментально при исследовании температурной зависимости динамических свойств вулканизатов [4]. Кроме того, в вулканизационных структурах металлооксидных вулканизатов карбоксилатных каучуков обнаружено большое число слабых связей. Об этом свидетельствует (помимо отмеченной термолабильности) быстрое снижение прочности вулканизатов при повышении температуры, высокая скорость релаксации напряжения, течение вулканизатов под нагрузкой при растяжении и сжатии, быстрое накопление остаточных деформаций [24, с. 15, 62, 69]. [c.160]

    Особенности образования и структура Т. п. При сшивании макромолекул обычно образуются поперечные ковалентные связи. Такой способ создания Т. п. наиболее широко используется для получения редкосетчатых эластичных полимеров вулканизацией каучуков (см. Вулканизационная сетка. Вулканизация) или радиационным сигиванием иолимеров. В пек-рых Т. п. поперечные связи 1ГМСЮТ ионную или ионно-координационпую природу. Такие связ Г лабильны и способны в определенных условиях обратимо разрушаться ири сохранении структуры исходных макромолекул (см. Иономеры, Карбоксилатные каучуки). [c.326]

    Ненаполненные резины на основе карбоксилатных каучуков обнаруживают высокую прочность и эластичность, подобно вулканизатам натурального каучука. Это объясняется образованием в вулканизате карбоксилатного каучука кристаллической фазы., связанной, очевидно, с особенностями структуры вулканизата, полученного с помощью окислов металлов, за счет солеобразова-ния, так как карбоксилатные каучуки по своей структуре по существу не отличаются от структуры обычных полимеров ввиду малого содержания карбоксильных групп. [c.109]

    В результате сорбции полярных подвесков KaSOaOMg l на поверхности оксида появляются вулканизационные структуры такого же типа, как и при сшивании карбоксилатного каучука оксидами металлов (см. разд. 10.4 и 13.3). Этим, по-видимому, объясняется высокая прочность ненаполнеиных техническим углеродом вулканизатов ХСПЭ, достигающая 18 МПа. [c.324]

    Эффект модифицирования наполнителей ПАВ в сильной степени зависит от природы полимера и наличия в нем функциональных групп, способных к активному взаимодействию с поверхностью. Происходящая при этом интенсивная адсорбция полимера обусловливает пептизацию и стабилизацию частиц, так что введение ПАВ в суспензии либо не вызывает значительного увеличения дисперсности наполнителя и резко выраженного эффекта активации, либо приводит к снижению прочности структур по аналогии с системами, содержащими большое количество примесей ПАВ в связующем. Так, модифицирование карбоната кальция СК не вызывает упрочнения структур в его суспензиях по сравнению с исходным наполнителем в растворе карбоксилатного каучука, хемосорбирующегося на наполнителе вследствие основных свойств его поверхности и наличия в полимере СООН-групп. Поэтому в таких системах использование ПАВ неэффективно. [c.72]


Смотреть страницы где упоминается термин Карбоксилатные каучуки структура: [c.230]    [c.230]    [c.7]    [c.57]   
Общая технология синтетических каучуков Издание 4 (1969) -- [ c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксилатные каучуки



© 2025 chem21.info Реклама на сайте