Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилспиртовые волокна водостойкость

    Поливинилспиртовое волокно винилон получают из поливинилового спирта. Для повышения водостойкости его обрабатывают формальдегидом. Структурная формула участка макромолекулы винилона выглядит так  [c.648]

    Поливинилацетат, полученный методом радикальной полимеризации при пониженных температурах (около 0°С), образует при последующем омылении поливиниловый спирт высокой степени стереорегулярности. Из этого полимера получаются волокна, обладающие такой же прочностью, как волокна, сформованные в т х же условиях из растворов поливинилового спирта, синтезированного при повышенной температуре (60 °С). Однако уменьшение числа разветвлений в молекуле поливинилового спирта значительно увеличивает водостойкость волокна и температуру его размягчения и снижает его растворимость. За висимость растворимости поливинилспиртового волокна от температуры полимеризации исходного мономера характеризуется следующими данными  [c.250]


    Поливиниловый спирт хорошо растворяется в воде, поэтому изготовление этих волокон осуществляется из водных растворов способом мокрого формования. Для придания поливинилспиртовым волокнам водостойкости их ацеталируют или обрабатывают формальдегидом. [c.577]

    Для повышения прочности волокон, полученных сухим способом, их подвергают термической вытяжке в 6—8 раз при 220— 230° С. В результате помимо ориентации макромолекул и увеличения надмолекулярных структурных образований повышается плотность и снижается набухание волокон в воде. При достаточно высокой температуре и большой вытяжке поливинилспиртовые волокна приобретают водостойкость даже в кипящей воде и влаго-поглощение высушенных волокон снижается до 3—3,5%. [c.219]

    Поливинилспиртовые волокна. Винилон (куралон) — волокно из поливинилового спирта, обработанное для повышения водостойкости формальдегидом  [c.419]

    Если водостойкость поливинилспиртовым волокнам придается обработкой капроновой кислотой при степени этерификации 30%, то привес составляет [c.179]

    Если водостойкость придается поливинилспиртовому волокну этерификацией малеиновой кислотой, то при степени этерификации 20% привес волокна достигает [c.180]

    Поливинилспиртовое волокно (винол) находит все большее применение для изготовления спецодежды, поскольку может быть получено с любой степенью водостойкости (от водорастворимого до почти совсем не поглощающего влагу). Винол обладает хорошими механическими свойствами (не уступает по прочности капрону), хорошей светостойкостью, высокой износоустойчивостью, стойкостью к действию кислот и щелочей средних концентраций. Виноловое волокно, хорошо выдерживает химическую чистку в хлорсодержащих растворах- и уайт-спирите. После специальной обработки винол приобретает огнестойкость и бактерицидные свойства, что очень важно при изготовлении из него ткани для спецодежды. Изделия из винола хорошо выдерживают температуру до 220 °С, сохраняют форму и размер при влажно-тепловой обработке, быстро сохнут. [c.11]

    Технологический процесс включает те же стадии, что и при производстве поливинилхлоридных волокон. Однако для получения водостойкого поливинилспиртового волокна дополнительно вводится операция, обеспечивающая перевод волокна в нерастворимое состояние. [c.229]

    Следовательно, нри термической обработке поливинилспиртового волокна повышается не только температура его растворения в воде, но и водостойкость готового волокна. [c.257]

    Поливинилспиртовое волокно (винол) находит все большее применение для изготовления спецодежды оно может быть изготовлено с любой степенью водостойкости (от водорастворимого до почти совсем не поглощающего влагу). Винол обладает хорошими механическими свойствами (не уступает по прочности капрону), хорошей светостойкостью, высокой износоустой- [c.9]


    Поливинилспиртовым волокнам можно придать водостойкость следующими методами [1—12]  [c.280]

    Наиболее распространенным методом придания водостойкости свежесформованным поливинилспиртовым волокнам является ацеталирование. [c.211]

    В СССР под названием впнол выпускается поливинилспир-товое волокно как водорастворимое, так и обладающее высокой водостойкостью, даже при кипячении в воде. Повышение водостойкости волокон достигается их термической обработкой, а также частичным ацеталированием формальдегидом. Технология производства и свойства поливинилспиртовых волокон описаны в книгах [144 145, с. 164—354]. Диапазон применения волокон из ПВС чрезвычайно широкий, он охватывает производство тканей и одежды, рыболовных сетей, канатов, парусины, брезента, различных фильтровальных материалов, нетканых изделий, бумаги и т. п. Высокомодульные нити из ПВС являются прекрасными армирующими наполнителями для пластмасс, транспортных лент, шлангов, мембран и других резинотехнических изделий. Химически модифицированные волокна используются в медицине и в качестве ионообменных материалов. [c.151]

    Настоящая работа была посвящена разработке способа придания водостойкости поливинилспиртовым волокнам ацеталиро-ванием их бензойным альдегидом в водной среде. В ходе исследований были изучены некоторые закономерности этого процесса. Полученные результаты изложены в данной статье. [c.211]

    С целью изучения изменения структуры волокон определяли зависимость плотности, сорбции иода и двойного лучепреломления от температуры термической обработки [4, 5, 30, 44, 68, 111]. Термическая обработка проводилась как в свободном, так и в фиксированном состоянии, а также с заданной усадкой. Из рис. 18.24 видно, что зависимость сорбции иода термообработанным волокном от температуры термической обработки носит весьма сложный характер, который трудно объяснить только изменениями вторичных структурных образований волокон в результате термической обработки. Термообработанное в фиксированном состоянии волокно сорбирует иод меньше, чем волокно, термообработанное в свободном состоянии, что хорошо согласуется с полученными ранее данными о более упорядоченной структуре волокон, термообработанных без усадки. Интервал температур термической обработки, в котором получается наиболее водостойкое поливинилспиртовое волокно (т. е. 210—220 °С), соответствует интервалу, в котором, по данным сорбции иода, происходит перестройка вторичной структуры волокна. Сходная картина наблюдается и в случае термообработки волокон сухого метода формования. [c.267]

    Причиной снижения прочности волокна является дезориентация макромолекул в процессе его свободной усадки, а также химические изменения, возникающие в макромолекулах поливинилового спирта при повышенных температурах (были рассмотрены ранее). Эти же химические изменения обусловливают пожелтение поливинилспиртового волокна в процессе термической обработки. С целью уменьшения потерь прочности ПВС волокна необходимо осуществлять его термическую обработку под натяжением. В этом случае прочность волокна оказывается не ниже, а иногда даже и выше, чем у свежесформованного волокна, а водостойкость термообработанного под натяжением волокна после ацеталирования — примерно такая же, как у ацеталированного волокна, прошедшего термическую обработку в свободном состоянии. [c.308]

    Тепловая обработка (особенно термообработка под натяжением) значительно повышает водостойкость поливинилспиртовых и теплостойкость ацетатных, поливинилхлоридных и других термопластичных волокон. Меняя условия вытягивания и термообработки, удается понизить склонность полиэфирных волокон к образованию пилинга. Таким образом, варьируя параметры этих процессов, удается изменять свойства химических волокон в столь же широких пределах, как и при изменении условий их формования. При этом можно изменять модуль деформации, степень усадки в кипящей воде, водо- и теплостойкость, а в некоторых случаях удается придавать волокнам антипилинговые свойства, жесткость или мягкость (податливость). [c.357]

    В многочисленных работах А. И. Меоса и Л. А. Вольфа, посвященных химической модификации поливинилспиртовых волокон для повышения водостойкости, предлагается их ацеталировать акролеином, бензальдегидом и фурфуролом и их производными, диаяьдегидом терефталевой кислоты, малеиновым диальдегидом или ангидридом- и другими аналогичными соединениями, образующими внутримолекулярные циклы и межмолекулярные химические связи. Помимо увеличения водостойкости многие из этих соедине- ний (сульфо,- амино- и карбоксипроизводные) придают волокнам ионообменные свойства, а альдегиды с непредельными связями (например, фурфурол) позволяют осуществлять дальнейшие присоединения методами диенового синтеза. Волокна приобретают бактерицидные, лекарственные, огнестойкие и другие новые свойства. [c.365]


Смотреть страницы где упоминается термин Поливинилспиртовые волокна водостойкость: [c.458]    [c.619]    [c.458]    [c.316]    [c.313]   
Карбоцепные синтетические волокна (1973) -- [ c.196 , c.255 , c.264 , c.271 , c.280 , c.295 , c.308 , c.309 , c.324 , c.325 , c.327 , c.331 ]




ПОИСК







© 2024 chem21.info Реклама на сайте