Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменения химические также реакция

    Устройство и работа коксовых печей. Коксование углей представляет собой высокотемпературный химический процесс. Реакции протекают сначала только в твердой фазе. По мере повышения температуры происходит образование газо- и парообразных продуктов, протекают сложные реакции внутри твердой и газовой фаз, а также происходит взаимодействие между ними. Основным фактором, определяющим протекание процесса коксования, является повышение температуры, ограниченное рядом факторов, среди которых следует указать на снижение выхода смолы и сырого бензола, изменение состава продуктов коксования, нарушение прочности огнеупорных материалов, используемых для кладки коксовых печей. [c.40]


    В случае химических реакций, также протекающих при постоянных температуре и давлении, Д2 в уравнении (12) эквивалентна изменению свободной энергии реакции, АН — тепловому эффекту реакции при постоянном давлении, а А8 — изменению энтропии. [c.102]

    Одна из основных особенностей электрохимической системы заключается в пространственном разделении участников протекающей в ней реакции. Поэтому общая токообразующая реакция распадается здесь па две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим э.д.с. электрохимической системы, как отра.жение изменения ее химической энергии в ходе суммарной реакции, также должна представлять собой сумму двух электродных потенциалов. Каждый из иих отвечает изменению химической энергии при протекании частной электродной реакции. Таким образом, [c.156]

    Хорошо известно, что органические соединения, особенно неполярные, могут абсорбироваться на поверхности или внутри мицелл. Это приводит к увеличению их растворимости в водных растворах и часто к изменению химической активности. В то же время именно мицеллы, а не индивидуальные молекулы ответственны за изменение скорости органических реакций в водных растворах, содержащих ПАБ. Следовательно, удачный выбор поверхностно-активного вещества может способствовать увеличению скорости в 5—1000 раз по сравнению со скоростью реакции, протекающей в его отсутствие. В зависимости от типа мицелл создается повышенная концентрация ионов Н+ или 0Н в слое Штерна, что и обусловливает увеличение скорости реакции. Другие основные или нуклеофильные группы в мицелле также должны оказывать каталитическое действие. Гораздо более слабые взаимодействия между мицеллой и противоионами существуют в более широком слое Гуи — Чепмена, ширина которого (от поверхности мицеллы) составляет несколько сотен ангстрем в этом слое содержание ионов меняется плавно( плавный градиент ионов). [c.284]

    При других партнерах по реакции и условиях ее протекания ряд изменения химической активности простых веществ может быть иным. Так, из щелочных металлов по отношению к фтору (а также кислороду) наиболее активен литий  [c.237]

    Процессы, протекающие в реакторе, очень сложны. Во время химической реакции в реакторе происходит не только изменение состава в результате этой реакции, но и процесс теплообмена (вследствие поглощения тепла, выделяющегося при реакции, или подвода тепла к реактору, а в некоторых случаях и отвода тепла). Теплообмен может привести к обратному влиянию на скорость реакции (константа скорости завнсит от температуры). Кроме того, изменяется давление в реакторе (при реакциях в газовой фазе), что также изменяет скорость реакции и соотношение потоков. При реакциях в жидкой фазе следует учитывать изменение уровня. Скорость реакции зависит от концентрации веществ, принимающих участие в реакции. Характер этой зависимости отражается на другой реакции. Решение системы уравнений, описывающих все эти одновременно протекающие реакции, мон<ет дать представление о взаимно. влиянии всех протекающих в реакторе процессов. Такое решение было бы громоздким и не очень наглядным. К тому же динамика уровня, давления и распространения тепла обсуж- [c.519]


    В процессе вулканизации, как об этом уже было сказано, наряду с реакциями поперечного сшивания, происходит изменение химического состава и строения молекулярных цепей в результате распада и перегруппировки серных связей, модификации молекул каучука серой и продуктами распада и превращения ускорителей вулканизации [25, 80—83]. Возможны также реакции циклизации и изомеризации, протекающие под влиянием вулканизующих Агентов [84—86]. Все эти структурные изменения молекулярных цепей могут в свою очередь влиять на прочностные свойства вулканизатов. [c.101]

    Отнесем мольную теплоту реакции (в кдж/кмоль) прореагировавшего вещества А, а также энтальпии всех реагентов к некоторой основной температуре 7 . Тогда, очевидно, общая теплота реакции x AH )Ti, равна изменению энтальпии всей системы, определяемой изменениями теплоемкостей и теплотами фазовых превращений компонентов. Другими словами, можно сказать, что изменение химической энтальпии численно равно изменению физической энтальпии.  [c.91]

    При реакции образования иодистого водорода система состоит из молекул водорода, иода и иодистого водорода, а также из взаимодействия между ними, заключающегося в разрыве, образовании или изменении химических связей и сопутствующих зтим процессам изменений энергии, в данном случае - поглощения тепла. [c.62]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]

    Помимо изменений кажущихся порядков реакций в зависимости от химических составов и свойств применяемых катализаторов значительно изменяются и относительные скорости превращений углеводородов. Ниже приведены относительные скорости гидрирования бензола и полициклических соединений [84], а также алкилбензолов [85, 86] в присутствии различных катализаторов  [c.156]

    Простейшим типом реактора является пустотелый цилиндрический аппарат, в котором реакция протекает в адиабатических условиях без использования катализатора или с небольшим его количеством, поступающим в реактор вместе с исходным сырьем в виде суспензии, эмульсии или в газовой фазе. Такие реакционные аппараты используются для химических процессов, при осуществлении которых допустимо изменение (повышение или понижение) температуры в зоне реакции, обусловливаемое тепловым эффектом реакции (изотермической или эндотермической), без теплообмена с внешней средой (потерями тепла пренебрегаем). Подобные условия имеют место при малом тепловом эффекте реакции и при сравнительно небольшой глубине превращения, когда температура также мало изменяется или когда наблюдаемое изменение температуры не приводит к значительному изменению скорости основной реакции и усилению побочных нежелательных реакций. [c.631]


    Относительная роль реакции гибели и передачи цепи меняется не только при изменении химического состава или природы каталитических систем, но и при изменении температурной области полимеризации в одной и той же системе [62, с.114], а также концентрации катализатора в реакционной смеси. Это находит отражение в величинах АЕ, которые изменяются при полимеризации изобутилена (как и ряда других мономеров) в весьма широких пределах, охватывая также и отрицательные значения. В частности, низкотемпературной ветви кривой Аррениуса (от 85 до 175 К), характеризующей полимеризацию изобутилена под действием А1С1з в СН3С1, отвечает АЕ = -0,84 кДж/моль, причем степень полимеризации Р в этих условиях не зависит от концентрации мономера. С повышением температуры Р становится чувствительной к концентрации мономера, а АЕ =- 15,1 кДж/моль [268], что обусловлено протеканием и других, помимо передачи цепи на мономер, реакций ограничения роста цепи. я-Алке-ны обычно не влияют на молекулярную массу, но уменьшают выход полиизобутилена, являясь ядами. Алкилгалогениды снижают молекулярную массу, не влияя на выход полимера, что характерно для агентов-передатчиков материальной цепи. Многие соединения проявляют в большей или меньшей степени оба эффекта, например Р-алкены. На рис.2.13 обобщены экспериментальные данные о кинетических параметрах реакций отравления и передачи цепи при полимеризации изобутилена [68, с. 146]. Чистые яды (пропилен, бутен-1, пен-тен-1 и т.п.) и чистые передатчики цепи попадают на горизонтальную и вертикальную оси соответственно. Как видно, достаточно эффективными передатчиками цепи являются грег-бутилхлорид и трет-бутилбромид. [c.117]

    К рассмотренным химическим процессам изменения состава вещества при изменении pH раствора относятся также реакции, характеризующие вещество как амфотерное. [c.320]

    В предыдущих параграфах было выяснено, как влияют изменения условий проведения реакций (концентраций реагирующих веществ, давления, температуры) на состояние равновесия химической системы. Действие этих факторов, а также любых других, влияющих на химическое равновесие, обобщается принципом Ле Шателье—Брауна (1884—1887), который в одной из современных формулировок гласит Если на систему, находящуюся в равновесии, оказывается внешнее воздействие, смещающее это равновесие, то равновесие смещается в сторону, указанную данным воздействием (ослабляющую его действие), до тех пор, пока нарастающее в системе противодействие не станет равно оказанному действию . [c.194]

    Кинетические характеристики элементарного акта (энтальпия и энтропия активации) определяются энергетикой и геометрией переходного состояния. Центральное место здесь занимает атом или группа атомов, которые образуют реакционный центр и подвергаются превращению. От того, какие атомы здесь участвуют, какие связи рвутся и образуются в элементарном акте, как происходит перегруппировка связей, зависят величины АН и А5. При замене в молекуле одного атома на его изотоп, например Н на О или на С, сохраняется природа атакуемого атома и меняются лишь масса молекулы и соответствующие химические связи. По теории переходного состояния можно оценить, в какой степени такая замена отразится на константе скорости реакции, и сделать выводы о структуре переходного состояния. Такое изменение константы скорости реакции как результат только изотопной замены атома в молекуле называется кинетическим изотопным эффектом (к. и. э.). Его количественной мерой является отношение констант. Например, при замене в молекуле КН водорода на дейтерий мерой к. и. э. является отношение Лн/ о- К. и. э. считается нормальным, если кц/к з > 1, обратным, если Лн/Лр < 1, и равным единице, если н = Различаются также первичный к. и. э., когда он возникает в результате замены на изотоп того атома, который входит в состав реакционного центра и подвергается структурному перемещению, и вторичный к. и. э., когда на константу скорости реакции влияет замена на изотоп атомов, не принимающих участия в элементарном акте. При изменении изотопного состава растворителя, например ОгО вместо Н2О, может возникнуть изотопный эффект по растворителю. [c.215]

    Количество излучения можно также измерить химическим актинометром, в котором определяется величина химического изменения. Выход фотохимической реакции в актинометре первоначально был определен при помощи термоэлектрической батареи. [c.555]

    Значительное изменение химического состава Земли и других тел Солнечной системы, а также туманностей происходит за счет ядерных реакций с космическими лучами. В связи с тем, что эти реакции протекают в течение очень длительного времени, их эффект становится заметным. Легче всего его можно заметить в метеоритах — самых маленьких телах Солнечной системы. [c.161]

    Вычислить изменение энтальпий реакций получения бинарных соединений (гидридов, сульфидов, галогенидов, карбидов, нитридов, фосфидов и др.), а также реакций, выражающих их химические свойства. [c.26]

    В 1902 г. Т. У. Ричардс заметил, что при понижении температуры величина А З для некоторых химических твердотельных реакций приближается к нулю. Аналогичное наблюдение было сделано В. Нернстом в 1906 г. Этот результат позволил М. Планку предположить, что не только изменение энтропии кристаллических тел в реакциях, но и сами энтропии идеальных кристаллов также стремятся к нулю при абсолютном нуле. Этот постулат Планка в дальнейшем ввиду его большого значения для термодинамики получил название Третьего начала термодинамики. Кратко его можно записать уравнением для нулевой энтропии  [c.369]

    Представленные выше данные подчеркивают важность условий протекания реакции, особенно отношения Н2/СО и общего давления, для обеспечения заданного распределения в продукте. Хотя наиболее распространенные каталитические вещества были изучены в различных видах синтеза на основе СО-ЬНг, дальнейшее систематическое исследование большинства этих веществ может дать полезные руководства для выбора каталитических свойств, необходимых для получения специфических химикатов. Должны быть исследованы также изменения активности и селективности, которые, как правило, являются закономерным следствием происходящих при синтезе изменений химического состава в объеме и на поверхности каталитической фазы. [c.264]

    На скорость реакции поликонденсации влияет концентрация мономеров и температурный режим С увеличением концентрации мономеров и повышением температуры скорость реакции возрастает При этом становится более вероятным взаимодействие растущих цепей макромолекул, а следовательно, и увеличение молекулярной массы полимера Однако в этих условиях ускоряются процессы деполимеризации низкомолекулярными веществами (избыточным мономером, низкомолекулярным продуктом реакции), а также возможно изменение химической природы функциональных групп (декарбоксилирование, окисление аминогрупп, отщепление аммиака и др ) Но повышение температуры способствует также и более быстрому удалению низкомолекулярного продукта реакции Таким образом, от выбора рецептуры исходной смеси мономеров и технологического режима зависят свойства получаемого полимера [c.25]

    Для некоторых смесей наблюдалась существенная зависимость UH от введения в смесь присадок. Хорошо известно, например, что введение в смесь СО-ьОз незначительных количеств воды, водорода, метана или других водородсодержащих соединений вызывает резкое возрастание значения Ын- Значение Ua для смеси СО-ЬОг равно 1 м/с, а после добавки 0,23% воды оно возросло до 7,8 м/с. Введение столь незначительного Количества воды практически не изменяет каких-либо физических свойств смеси, поэтому очевидно, что такой эффект обусловлен изменением химического механизма процесса. Наблюдалось увеличение на 53% скорости горения бутано-воздушной смеси в присутствии 1,48% озона. Присадки, инициирующие самовоспламенение смеси (этилнитрат, этилпероксид и др.), а также антидетонаторы (тетраэтилсвинец, нентакарбонилжелезо, ди-этилолово, тетраметилолово) не оказывают существенного влияния на скорость распространения пламени. Этот экспериментальный факт убедительно свидетельствует о том, что механизм реакций, протекающих в предпламенной зоне, существенно отличается от механизма предпламенных процессов при самовоспламенении (взрывном горении) смеси. [c.119]

    Массу исходных веществ и конечного продукта можно с достаточной точностью определить на обычных аналитических весах. Для надежной регистрации изменения массы во времени и получения на основании проведенных измерений сведений о ходе химической реакции, необходимы весы специального типа, которые в зависимости от цели применения должны удовлетворять нескольким дополнительным требованиям. Поскольку реакции в основном протекают нeпpep Jвнo, даже если скорость их переменна, изменение массы также нужно регистрировать непрерывно и по возможности получать эти данные без временных задержек. Обычные аналитические (рычажные) весы пригодны для взвешивания в очень ограниченных пределах. Применение весов с низко расположенным центром тяжести (см. гл. 38) и оптическое увеличение амплитуды стрелки весов (принцип световой стрелки, используемый также в зеркальных гальванометрах) значительно расширяет возможности метода. Некоторые термовесы сконструированы по этому принципу. [c.393]

    Однако абсолютные значения свободной энергии химических реагентов не известны. В настоящее время для многих соединений определены только относительные значения величин AG. Относительные значения свободной энергии требуют использования также относительных точек отсчета. Поэтому принимают, что свободная энергия стабильных форм элементов при температуре 25 °С и давлении 10 Па равна нулю . Свободная энергия образования различных соединений вычисляется на предположении, что она равна изменению энергии. Стандартная энергия образования соединения из элементов есть изменение свободной энергии реакции, в которой реагируют элементы при условии, когда все реагенты и продукты находятся в стандартном состоянии (выражают в джоулях на моль). Например, свободная энергия образования N 0 при температуре 25 °С равна —212,49 кДж/моль. Это означает, что стандартная сво-болиля энергия реакции [c.77]

    Законы химической термодинамики определяют возможность, направление и степень протекания химического превращения веществ — химической реакции. Эти сведения получают путем расчета величины изменения свободной энергии рассматриваемой системы, знака этого изменения, а также величины константы равновесия. Как указывалось в гл. 8, процесс происходит, вернее может происходить, если он приводит к уменьшению свободной энергии. Это изменение свободной энергии можно считать, таким образом, движущей силой процесса. При Л0 = 0 изменение системы не происходит, так как равна нулю движущая сила такого изменения, система является равновесной. Чем дальше система от равновесия, т. е. чем больше разность энергий данного и ра вновесного состояний, тем больше величина АО, тем больше выигрыш в энергии при переходе системы в равновесное состояние, потому что, можно сказать, большей оказывается движущая сила процесса. [c.196]

    В предлагаемой книге авторы предприняли попытку изложить полученные к настоящему времени на основании ряда упрощающих предположений результаты теоретического исследования массотеплообмена движущихся реагирующих частиц со средой. Предполагается, что изменением плотности при химических превращениях (выражающимся, в частности, в появлении потоков Стефана) можно пренебречь. Баро- и термодиффузия, а также перенос тепла излучением считаются пренебрежимо малыми. Предполагается также, что плотность и вязкость среды не зависят от концентрации и температуры и, следовательно, раснределения концентрации и температуры не оказывают влияния на обтекание частицы. Это приводит к возможности независимого анализа гидродинамической задачи о вязком обтекании и диффузионно-тепловой задачи о полях концентрации и температуры. Необходимая для решения диффузионно-тепловой задачи информация о поле скоростей считается известной. Коэффициенты диффузии и температуропроводности считаются не зависящими от концентрации и температуры. В некоторых разделах книги наряду с поверхностными превращениями рассматриваются также реакции, протекающие в объеме. [c.10]

    Кроме нестационарности скорости превращения может возникнуть нестационарность состояния катализатора. Помимо реакции собственно каталитического превращения возможно взаимодействие катализатора с реакционной средой, стадии которой, как правило, не являются стадиями реакции, например окисление -1юсстановление поверхности катализатора. В зависимости от степени окисленности меняются активность и селективность катализатора. И если эти процессы протекают медленнее, чем изменение концентраций и температуры у поверхности катализатора, то последний не будет находится в стационарном состоянии относительно реакционной среды, что скажется на показателях процесса. В этом случае математическое описание динамического режима, подобного (4.104), надо дополнить уравнениями изменения состояния катализатора (например, уравнениями окисления - восстановления поверхности) и учесть, что параметры химической модели реакции каталитического превращения зависят от состояния катализатора. Математический анализ - необходимость учета тех или иных составляющих процесса - также надо проводить как анализ уравнений с малыми параметрами. [c.242]

    Реакции окисления углеводородов начинаются при более низких температурах, чем окисление СО и Нз. В присутствии катализаторов эти реакции наблюдаются начиная с температур порядка 100° С, после чего наступает пламенное горение. Так как реакции горения углеводородов имеют цепной характер и протекают со сравнительно большим индукционным периодом, процесс горения сопровождается в той или иной степени термическим распадом исходных молекул. Этот раснад происходит из-за тецловой неустойчивости углеводородов, выражающейся в том, что при нагревании в зависимости от температуры, длительности ее воздействия и ряда других факторов они претерпевают изменение химической структуры, начиная от простого расщепления до перегруппировки атомов в углеводородные соединения другого гомологического ряда. Эти новые углеводороды являются также теплонеустойчивыми, так что конечными продуктами такого процесса, если он достаточно длителен, все же являются углерод и водород. Из всех углеводородов наиболее устойчивым является метан, теплоустойчивость других уменьшается с увеличением молекулярного веса. [c.156]

    Процесс прокаливания нефтяных коксов сопровождается сложными физико-химическими превращениями — реакциями распада, а также уплотнения недококсованных смолистых веществ, перестройкой структуры и изменением тепло-физических характеристик. Перечисленные переходы протекают с выделением или поглощением тепла, и изучение тепловыделения (теплопоглощения) может дать ценную информацию о происходящих превращениях. Сведения о тепловом эффекте прокаливания имеют также большой практических интерес для расчета прокалочных агрегатов.Исследование термохимических особенностей проводили на дериватографе системы Паулик в интервале температур 20—1200°С. Навеска кокса во всех опытах составляла 250+1 мг, скорость нагрева 6°С/мин. Чтобы избежать контакта с воздухом, прокаливание осуществляли в атмосфере азота. [c.247]

    Комплекс явлений, связанных с изменением химической природы материала при механических воздействиях, а также с образованием и дальнейшими превращениями реакционноспособных соединени , получающихся прн механическом разрушении (дробление, резание, вальцевание, ультразвуковое воздействие), получи л название механо-химических явлений. Распространенность этих явлений и широкие возможности для проведения различных химических реакций, вызвали появление большого количества работ в этой области, отраженных в ряде обзорных статей и в монографии . [c.256]

    Уменьшения среднего молекулярного веса основной массы углей можно достигнуть также и другим путем, а именно растворением углей в различных растворителях. Известно, что твердые горючие ископаемые при нагревании в присутствии различных веществ в качестве растворителей претерпевают своеобразный распад с изменением химической структуры. Весьма интересным представляется здесь то, как показал В. И. За-бавин [17], что образовавшиеся новые, более простые, частицы угольного вещества оказывались весьма реакционноспособными и легко вступающими в реакции с различными органическими веществами, которые непосредственно с углем не реагируют, например олеиновая кислота. К сожалению, в этих работах, проведенных с целью выявления параметров для классификации углей и выяснения причин их спекаемости, должным образом не были оценены перспективы использования указанных свойств углей для других практических целей. [c.13]

    И.Н. Соломонова (Институт электрохимии АН СССР, Москва). В статье И. Е. Неймарка (стр. 151) было показано, что изменение химической природы поверхности адсорбента путем проведения химической реакции приводит к изменению его адсорбционной активности. В случае силикагелей это связано с исключением из адсорбционного процесса гидроксильных групп, являющихся центрами адсорбции, а также с ослаблением потенциала дисперсионннх сил притяжения за счет отодвигания адсорбированных молекул от ]<ремнекислородного остова. Некоторую информацию об энергии взаимодействия адсорбированных молекул с модифицированными поверхностями может дать смеш,ение соответствующих полос поглотцения в ИК-спектрах активных к взаимодействию групп при адсорбции. Для этого необходимо получать однородные слои с выдвинутыми вперед активными функциональными группами, не содержащие гидроксильных групп, поскольку спектральные проявления взаимодействий на них наиболее сильны. [c.195]

    Заканчивая рассмотрение вопроса о кинетических закономерностях окисления углеводородов, следует подчеркнуть, что, вероятно, повышение селективности процесса невозможно без изменения химических и электронных свойств поверхности катализаторов. Устранение побочных процессов и доокисления образующихся кислородсодержащих продуктов может несколько повысить селективность, но только до определенного предела. Дальнейшее же увеличение селективности связано с характером образующихся на новерхности активных перекисных радикалов и направлением их превращений. Кинетика реакции окисления различных углеводородов относительно проста, и в уравнения скоростей входят концеитрации реагирующих веществ в нулевой или первой степени только в редких случаях наблюдаются дробные показатели. Однако изучение адсорбции углеводородов на различных окислительных катализаторах показало, что поверхность этих контактов неоднородна и характеризуется эксионенциальной функцией распределения по теплотам сорбции. Вероятно, хорошее соответствие теоретически выведенных уравнений (с использованием изотерм Лэнгмюра, справедливых только для однородных поверхностей) и опытных данных указывает, что, хотя процессы протекают в действительности на неоднородных поверхностях, для них возможна имитация однородных поверхностей. Возможно также, что некоторые реакции протекают при относительно большом занолнении иоверхности реагирующими компонептами, и тогда также возможна квазиоднородность . Нами не рассматриваются более сло кные случаи протекапия каталитической реакции на неоднородных поверхностях. [c.177]

    Прежде всего это конкурентная адсорбция другого адсорбата, в результате которой возможно относительное уменьщение прочности адсорбции искомого адсорбата. Последний процесс можно рассматривать также как результат уменьшения pH, которое смещает равновесие реакции (6) (гл. 2) влево. Второй адсорбат не должен, конечно, проявлять нежелательные каталитические свойства. Маатман [23] описал, как можно таким образом управлять структурой дисперсных металлических катализаторов. Кроме того, относительная прочность адсорбции снижается с увеличением температуры, поэтому повышение температуры приводит к более равномерному распределению адсорбата. Очевидно, изменить характер адсорбции можно и в результате изменения химической природы металлсодержащих адсорбатов об этом, а также о влиянии других факторов подробнее говорится в последующих разделах. [c.183]


Смотреть страницы где упоминается термин Изменения химические также реакция : [c.28]    [c.106]    [c.3]    [c.147]    [c.108]    [c.89]    [c.295]    [c.18]    [c.309]    [c.55]    [c.76]    [c.149]    [c.113]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.30 , c.32 , c.47 , c.50 , c.51 , c.55 , c.60 ]




ПОИСК







© 2024 chem21.info Реклама на сайте