Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конъюгация у бактерий штаммы Hfr

    Перенос генетического материала путем прямого контакта между двумя клетками называется конъюгацией. Уже давно на основании морфологических данных предполагали, что и у бактерий может происходить своего рода спаривание однако только эксперименты с множественными мутантами бесспорно доказали, что и у бактерий возможна передача генетического материала при прямом межклеточном контакте. В 1946 г. Ледерберг и Татум провели решающий опыт с двумя мутантами Е. соИ К12, каждый из которых был ауксотрофным по двум различным аминокислотам (рис. 15.14). Один двойной мутант нуждался в аминокислотах А и В, но был способен синтезировать С и D (А В D ) другой мутант был ему комплементарен (А В" С D ). Эти мутанты не росли на минимальной питательной среде и не образовывали колоний. Однако если на ту же минимальную среду высевали смесь суспензий обоих мутантов, то колонии появлялись. Клетки этих колоний обладали наследственной способностью синтезировать все аминокислоты, т.е. принадлежали к типу A B D (были прото-трофными). Такие клетки возникали с частотой 1 10 это были генетические рекомбинанты-они объединяли в себе генетическую информацию двух реципрокно дефектных (взаимодополняющих) родительских клеток. Использование в качестве исходных штаммов множественных мутантов исключало возможность появления ревертантов, так как вероятность одновременной реверсии по двум генам составляет величину порядка 10 на генерацию. Необходимой предпосылкой рекомбинации служил прямой контакт родительских клеток. [c.456]


    Передача резистентности. Гены, обусловливающие резистентность, могут передаваться от одной бактерии к другой различными путями. Наиболее обычный механизм — конъюгация, простейшая форма полового процесса, описанная в разд. 2.3.3. Гены резистентности часто находятся в плазмидах (мелких кольцевых фрагментах ДНК). Они способны реплицироваться, а их копии могут передаваться в ходе конъюгации чувствительным бактериям, которые в результате становятся устойчивыми к данному антибиотику. Обмен генетической информацией между микробами (даже разных видов) может привести к так называемой множественной резистентности, т. е. неуязвимости возбудителя сразу для нескольких лекарственных препаратов. Большой проблемой для многих больниц в настоящее время является инфекция, вызываемая полирезистентными штаммами золотистого стафилококка. [c.227]

    Процесс конъюгации очевидно распространен в природе. В результате обмена генетическим материалом вследствие конъюгации появляются штаммы бактерий, обладающие атипичными признаками. [c.110]

    Теперь, когда процесс конъюгации доказан для многих родов и видов бактерий, можно надеяться на успех использования его в целях изучения генетических рекомбинаций и для получения практически ценных штаммов — продуцентов аминокислот, витаминов и других веществ, а также для производства вакцин. [c.108]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Из одного F штамма может возникнуть множество различных штаммов Hfr, для каждого из которых характерна собственная локализация и ориентация F-фактора в хромосоме бактерии (рис. 8.8). Это проявляется в описанных выше опытах с прерванной конъюгацией в каждом Hfr-штамме передача бактериальной хромосомы начинается с собственной, иной чем у других штаммов точки различна также и ориентация хромосомы при этом. Для каждого штамма можно установить характер сцепления между генами, расположенными неподалеку от точки, с которой начинается передача бактериальной хромосомы. Совокупность таких данных по множеству различных штаммов Hfr позволяет установить характер сцепления маркеров в хромосоме в целом и построить физическую карту хромосомы Е. соИ. Как показано на рис. 8.9, эта карта имеет форму кольца, что полностью соответствует кольцевой форме бактериальной ДНК. [c.238]


    При конъюгации бактерии Шг-штамма с бактерией F (женской) происходит следующее в какой-то точке, расположенной близко от конца интегрированного фактора F, хромосома начинает реплицироватьсяу [c.190]

    Обнаружение лизогенных и нелизогенных штаммов у способного к конъюгации штамма Е. oli К12 дало возможность проводить скрещивания таких бактерий и изучать распределение профага А, у рекомбинантов. Первые скрещивания такого рода были осуществлены в то время, когда природа процесса конъюгации бактерий оставалась еще неясной, а частота появления бактериальных рекомбинантов в условиях опыта составляла примерно 10 на клетку. Тем не менее уже эти скрещивания показали, что профаг, по крайней мере в одном отношении, ведет себя как хромосомный детерминант наследственности, а именно некоторые рекомбинантные бактерии оказались лизогенными, а другие — нелизогенными. Характер распределения профага среди рекомбинантных бактерий указывает, что лизогенность по фагу сцеплена с генами gal, контролирующими сбраживание галактозы. Большинство рекомбинантов получает признаки gal и лизогенность по фагу (X) от одного и того же родителя. Однако в отличие от обычных хромосомных генов профаг X дает асимметричное распределение в реципрокных скрещиваниях между лизогенными и нелизогенными бактериями. Если нелизогенный донор скрещивается с лизогенным реципиентом F , то признак нелизогенности передается от донора к рекомбинантам, но при скрещивании с нелизогенным реципиентом F" признак лизогенности от донора F" " (X) почти никогда не обнаруживается у рекомбинантов. [c.342]

    Рис 4 3 Зиготная индукция При конъюгации бактерий гены донорной клетки входят в рецициентную клетку в определенном порядке Различные донорные штаммы начинают перенос кольцевой хромосомы Е сок с разных ее участков Белки, в том числе репрессор "к, не переносятся в реципиентную клетку при [c.88]

    Факторы устойчивости микроорганизмов к антибиотикам, связанные с переносом генов резистентности, впервые были обнаружены на примере Shigella в 1957 г. японскими исследователями. Позднее было установлено, что устойчивость штаммов бактерий к лекарственным препаратам определяется наличием плазмид, передаваемых при конъюгации. [c.456]

    Хромосомную карту Е.соИ можно получить, если смешать клетки Hfr и р- и дать возможность конъюгации происходить в течение опре-деленного интервала времени, а затем клетки интенсивно перемешать, например, в гомогенизаторе Уоринга. В результате этой процедуры все конъюгационные мостики разрушаются и процесс спаривания бактерий прерывается. Спаривание прерывают через разные промежутки времени и определяют наличие в бактериях-реципиентах генов, перенесенных иа Клеток донорного штамма. При помощи этого метода было показано,, что для полного переноса хромосомы при 37 °С требуется приблизительно 100 мин и что локализацию любого гена в хромосоме можно приблизительно установить по времени, необходимому для переноса этого гена в клетку-реципиент. В действительности, однако, все выглядит несколька сложнее. Поскольку полный перенос всей хромосомы осуществляется редко, в опытах обычно используются разные подштаммы Е. соИ К-12, У которых фактор F расположен в разных местах во всех случаях гены,, локализованные по часовой стрелке сразу же за точкой интеграции (рис. 15-1), переносятся быстро и с высокой частотой. [c.191]

    Чтобы проверить, можно ли создать бактерию, обладающую более широкими катаболическими возможностями и в то же время способную расти и развиваться при низких температурах, плазмиду TOL (детерминирует разрушение толуола) ме-зофильного штамма Pseudomonas putida перенесли с помощью конъюгации в психрофильный (с низким температурным оптимумом) штамм, ути-лизирутощий салицилат при температуре, близкой к О °С. Трансформированный штамм содержал введенную в него плазмиду TOL и собственную плазмиду SAL, детерминирующую разрушение салицилата, и был способен утилизировать как салицилат, так и толуол в качестве единственного источника углерода при 0°С (табл. 13.2). Психрофильный штамм дикого ти- [c.281]

    Фимбрии. Поверхность некоторых бактерий покрыта очень тонкими прямыми волосками — фимбриями. Они встречаются как у подвижных, так и у неподвижных форм бактерий. Их количество велико и может исчисляться тысячами. Назначение фимбрий неизвестно, однако есть указание на активное участие фимбрий в процессах адсорбции бактерий частицами минералов. У некоторых бактерий, например Es heri hia oli штамм К-12, имеются на поверхности клетки тонкие трубчатые отростки — f-пили, участвующие в половом процессе — конъюгации. Пили выявлены у клеток-доноров (один-два на клетку). [c.30]

    А. Вверху видны две клетки штамма, имеющие щетинкоподобные выросты внизу — клетка, на которую напали бактериофаги (ср. фиг. 117) фаги видны справа в виде маленьких глазков с длинными иглоподобными выростами. Бактериофаги были инактивированы облучением ультрафиолетом и теперь служат лишь меткой для данного бактериального штамма. Нижняя клетка соединена мостиком с клеткой, принадлежащей к другому штамму, который устойчив к бактерио фагам. Б и В. Образование мостиков при конъюгации между клетками двух разных штаммов (для одного из которых характерны удлиненные, для другого— округлые клетки). Увеличение на фиг. А примерно X 18 ООО, на фиг. —примерно X 640 ООО, а на фиг. В — Х17 ООО. [c.242]

    Включение профага в хромосому бактерии в определенном положении вызывает определенный эффект, в частности иммунитет к действию фага того же самого типа или его мутантов. Наличие профага влияет также на биохимические свойства бактерии-хозяина, и если при конъюгации или трансдукции (см. ниже) этот профаг переносится на нелизогенный штамм [c.253]


    В 1914 г. В. Генри обнаружил среди выживших после облучения ультрафиолетовым светом бактерий большое количество, как он считал, наследственных вариантов, отличающихся от нормального типа по таким свойствам, как морфология колоний и патогенность. Из этого наблюдения Генри заключил (за 13 лет до того, как Мёллер доказал мутагенное действие рентгеновских лучей на плодовую мушку), что ультрафиолетовые лучи мутагенны для бактерий. Однако доказательство этого утверждения пришло лишь много лет спустя с расцветом в сороковых годах генетики бактерий, когда Демерец показал, что среди 10 клеток Е. соИ штамма Топ (чувствительного к фагу Т1), выживших после облучения определенной дозой ультрафиолетовых лучей, доля мутантов Топ более чем в тысячу раз превышает спонтанный уровень этих мутантов среди необлученных бактерий. Вскоре ультрафиолет стал одним из наиболее широко распространенных мутагенов, используемых для получения мутантов бактерий. Многие мутанты, которые упоминались в предыдущих главах, были отобраны среди клеток, выживших после облучения ультрафиолетом немутантного родительского штамма. Так, например, были получены использованные в опытах по конъюгации (гл. X) Hir- и Р -штам-мы Жакоба и Вольмана с множественными мутациями, а также мутанты Тгр Яновского, использованные для изучения тонкой генетической структуры генов trp (гл. XIV). Однако, хотя молекулярный механизм спонтанных мутаций, а также мутаций, индуцированных аналогами оснований и акридиновыми красителями, к 1960 г. был достаточно хорошо изучен (см. гл. XIII), выяснение механизма мутаций, вызванных ультрафиолетом — исторически первым и долгое время наиболее широко распространенным бактериальным мутагеном, — задержалось до тех пор, пока не был выяснен механизм репараций. [c.381]

    Обычно рассматривают Три типа переноса генов у бактерий. Первый тип — трансформация — это такой процесс, при котором ДНК одной бактерии — донора переходит в другую бактерию — реципиент. Реципиент-ная клетка, в которой происходит экспрессия генетических признаков донора, называется трансформантом. Второй тип трансдукция — это процесс генного переноса, при котором бактериальный вирус (бактериофаг), размножающийся в клетках бактериального штамма-до-нора, включает в себя часть генетической информации бактерии и после инфицирования другого, реципиент-ного, штамма вызывает иногда наследуемые изменения у последнего. Реципиентная клетка, которая таким путем приобретает признаки донора, называется трансдук-тантом. Третий тип переноса — кон ьюгацця — это процесс, при котором клетки бактериального штамма-доно-ра вступают в непосредственный механический контакт с клетками реципиентного штамма и передают последнему генетический материал. Реципиент, который получает этот материал, называется трансконъюгантом. Наряду с процессом мутирования генов трансформация, трансдукция и конъюгация играют важную роль в появлении новых типов бактерий. Эти процессы очень важны также потому, что они позволяют исследователям, занимающимся бактериальной генетикой, выяснять биохимические и генетические аспекты функционирования бактерий, устанавливать принципы строения, функционирования и регуляции генов, а также более сложных процессов синтеза макромолекул, роста и деления клеток. [c.65]


Смотреть страницы где упоминается термин Конъюгация у бактерий штаммы Hfr: [c.514]    [c.287]    [c.339]    [c.9]    [c.466]    [c.202]    [c.219]    [c.205]    [c.118]    [c.171]    [c.306]    [c.364]    [c.463]    [c.242]    [c.315]    [c.316]    [c.54]    [c.55]    [c.218]    [c.219]    [c.222]    [c.241]    [c.339]    [c.352]    [c.306]    [c.364]    [c.103]    [c.105]    [c.538]    [c.114]    [c.128]    [c.166]    [c.26]   
Молекулярная генетика (1974) -- [ c.222 , c.224 , c.226 , c.227 , c.229 ]




ПОИСК







© 2025 chem21.info Реклама на сайте