Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутанты II также Мутации

    До сих пор мы обсуждали одни лишь рецессивные мутации, т. е. переход гена А в ген а несомненно, что подобные мутации встречаются чаще всего. Однако возможны также мутации в противоположном направлении, т. е. а- А. Подобные мутации часто представляют собой обратные мутации, наблюдаемые у мутантов, являющихся рецессивными гомозиготами и лишь недавно возникших из доминантного состояния. [c.192]

    Совсем иное дело, если механизм изменчивости микробов мутационный. Тогда мутации возникали с течением времени за весь период роста каждой культуры. Вероятность мутации — малая величина поэтому число мутаций вначале было мало и, следовательно, статистические флюктуации были относительно велики. А затем каждая клетка, в том числе и мутировавшая, размножалась экспоненциально, и в результате образовывались миллионы резистентных клеток. Тем самым флюктуации числа мутантов также колоссально умножились. Качественно это легко понять. Пусть в какой-то интервал времени образовалось среднее число мутантов Av. До момента окончания роста культуры каждый из мутантов размножился в А, раз. Ясно, что в этом случае Var Av=Av, так как отдельные мутации независимы и подчинены закону Пуассона. Но мы измеряем на опыте дисперсию не мутаций, а чисел уже размножившихся резистентных клеток Ар== = A,Av. Среднее квадратичное отклонение Ар будет  [c.302]


    Существуют также мутации бактерий, вызывающие устойчивость к определенным бактериофагам или антибиотикам. Первые из них обычно влияют на способность фага прикрепляться к бактерии-мутанту, поскольку у мутанта несколько изменены белки мембраны. Устойчивые (резистентные) мутанты легко отбираются при посеве клеток, подвергнутых действию какого-либо мутагена, непосредственно на среду, содержащую данный фаг или антибиотик выросшая бактериальная колония и есть мутант. Мутации, вызывающие устойчивость к определенным антибиотикам, хорошо известны, поскольку они создают серьезную проблему для медицины и здравоохранения. Фенотип устойчивости к фагу Т1, обозначается символом Т1 (фенотип чувствительности к фагу-Т1 ). Соответственно, устойчивость и чувствительность к антибиотику стрептомицину обозначают как Str и Str . Ген чувствительности к фагу Т1 обозначается как ton, (ton -синоним Т1 ген чувствительности к стрептомицину-sir (sir -синоним sir ). [c.229]

    Возник еще один вопрос не вызывается ли изменение генотипа самим селективным фактором, оказывающим направленное воздействие на гены Или же мутации происходят независимо от среды и носят ненаправленный характер Теория Ламарка о наследовании приобретенных адаптивных признаков в отношении высших организмов оказалась несостоятельной. Получила признание теория Дарвина, согласно которой новые типы и виды возникают в результате мутаций, не зависящих от среды, с последующим отбором наиболее приспособленных форм. У высших организмов передающиеся потомкам мутации происходят в половых клетках, в значительной мере защищенных от воздействия среды. В отличие от этого бактериальные клетки легко подвержены внешним влияниям. Поэтому можно было представить себе, что воздействие яда, приводящее к появлению в бактериальной популяции устойчивых мутантов, не сводится только к отбору, а определяет также и направленность мутаций. Вопрос о зависимости мутаций от среды и об их направленном характере оставался кардинальной проблемой биологии, и его предстояло решать на бактериях. [c.440]

    Можно ли считать, что больпшнство мутантов гП несет точковые мутации Если это так, то должны соблюдаться следуюш,ие два условия 1) скрещивание любого мутанта гП по крайней мере с одним из двух других неаллельных мутантов гП, дающих при скрещивании друг с другом рекомбинанты дикого типа (г" ), должно также приводить к образованию рекомбинантов дикого типа (г" ) 2) мутанты гП должны с измеримой частотой возвращаться (ревертировать) к дикому типу, особенно если частоту мутирования (в данном случае речь, естественно, идет о превращении гП г+) повышают с помощью специальных воздействий. Оказалось, что большинство исследованных мутантов гП ведет себя именно таким образом ири этом частота обратных мутаций различна для разных мутантов гП. Большинство индуцированных мутаций можно разбить на два класса (табл. 53) 1) мутации. [c.492]

    Если мутантные клетки претерпевают еще одну мутацию, в результате которой, например, устойчивый к стрептомицину штамм приобретает также способность сбраживать маннит (дикий тип не обладает этой способностью), то появляются уже два генетических маркера, за передачей которых путем трансформации можно наблюдать. Добавление чистой ДНК, полученной из таких двойных мутантов, к культуре дикого типа приводит к тому, что большая часть клеток приобретает либо устойчивость к стрептомицину, либо способность сбраживать маннит. Частота появления клеток, обладающих обоими этими признаками, оказывается значительно выше произведения частот появления клеток с каждым из признаков в отдельности. Такой результат может быть истолкован лишь как следствие одновременного переноса обоих генетических маркеров в одном акте трансформации. [c.312]


    При этих попытках пришлось столкнуться с одним специфическим затруднением как правило, мутанты обладают пониженной жизнеспособностью, которая часто связана с неблагоприятными изменениями в структуре хромосом. Нередко и более тонкие изменения, предположительно зависящие от истинных генных мутаций, также обладают отрицательным эффектом и дают начало мутантам, не имеющим хозяйственной ценности. Все же среди экспериментально полученных или естественно возникших мутантов можно выбрать небольшое число мутантов, не связанных с неблагоприятными изменениями и имеющих нормальную или повышенную жизнеспособность и урожайность. Может также случиться, что мутации, оказавшиеся неблагоприятными в исходной генотипической среде, дают более благоприятные результаты после скрещивания и рекомбинаций. В настоящее время соверщенно ясно, что новые гены или аллели, возникающие под действием излучения, относятся в основном к тому же типу, что и мутации, спонтанно возникающие в природе. Это значит, что наследственную изменчивость можно значительно усилить под действием излучения и других сходных факторов (см. стр. 210). [c.403]

    Это верно также и для искусственно полученных мутаций. Как удвоение числа хромосом, так и возникновение мутаций приводит к более или менее значительному нарущению генетического баланса, но вредный эффект этого нарущения может быть нейтрализован или смягчен путем рекомбинаций, без потери практически ценных качеств мутанта, появление которых обусловлено первичным изменением. [c.408]

    Помимо основных, важнейших метаболитов, присутствующих во всех живых клетках, высшие растения содержат значительные количества вторичных метаболитов, таких, как фенилпропановые соединения, описанные нами в этой главе, а также флавоноиды и другие пигменты, терпены, алкалоиды и т. д. Френкель [19] рассмотрел некоторые гипотезы о причинах существования этих вторичных соединений, многие из которых характерны только для ограниченного числа видов. Полагают, что новые метаболиты возникали в ходе эволюции в результате случайных мутаций. Если эти соединения имели хотя бы небольшое значение для выживания мутанта — пусть это было даже совсем незначительное преимущество,— то этот мутант постепенно вытеснял родительский штамм из его экологической ниши или даже распространялся в другие ниши. Новые метаболиты могут повышать выживаемость растений, защищая их от грибов, бактерий или насекомых или делая их несъедобными для животных. Другие вещества могут способствовать опылению, привлекая к цветкам насекомых. Кроме того, могут возникать вещества, которые повышают устойчивость растений к засухе или морозу. Преимущества, обусловленные одревеснением, [c.370]

    У гетерозигот по другим хлорофильным мутациям, характеризующимся светло-зеленой или бледно-зеленой окраской листьев, преимуществ перед нормальной гомозиготой не наблюдали. Следует отметить, что мутантам со светло-зелеными или бледно-зелеными листьями также свойственна пониженная продуктивность. [c.131]

    Бензер решил установить, не обусловлен ли фенотип гП-мутантов из его коллекции повреждениями более чем в одной функциональной единице. То обстоятельство, что два г11-мутанта при разнообразных экспериментальных условиях проявляют один и тот же фенотип, само по себе вовсе не гарантирует, что соответствующие мутационные изменения затрагивают одну и ту же функциональную единицу. Мы уже упоминали, например, что стерильные пятна типа г на обычных штаммах Е. соИ образуются при разных мутациях, удаленных друг от друга настолько сильно, что вряд ли они затрагивают одну и ту же функциональную единицу. И если разные гП-мутанты неспособны размножаться на непермиссивных штаммах К, то это не обязательно означает, что всем им свойствен один и тот же функциональный дефект генетического материала. Для выяснения принадлежности двух различных мутаций гП к одной и той же функциональной единице Бензер воспользовался так называемым цис-транс-те-стом, или тестом на комплементарность (фиг. 153), приспособив его для-работы с фагами. Этот тест был разработан ранее применительно к высшим организмам стой же целью, т. е. для изучения природы функциональной единицы. Комплементационный тест Бензера был основан на том, что на штамме К, зараженном одновременно гИ-мутантом и фагом дикого типа г, оба типа размножаются нормально. Это означает, что нормальный ген родительского фага дикого типа способен обеспечивать функцию, необходимую для размножения на штамме К не только фага дикого типа, но и дефектного гП-мутанта. На языке генетики можно сказать, что при смешанном заражении штамма К двумя фагами ген дикого типа г доминирует над мутантным аллелем гН. В тесте на комплементарность клетки штамма К заражают двумя гИ-мутантами (каждый из которых в одиночку не способен размножаться на штамме К), чтобы выяснить, смогут ли они при смешанном заражении помогать друг другу и образовывать инфекционное потомство. Если два мутанта способны к такому совместному размножению, то это означает, что две мутации этих мутантов локализованы в разных функциональных единицах фагового генома. Неспособность одного из мутантов размножаться на штамме К (иными словами, его фенотип гН) свидетельствует о том, что этот мутант неспособен осуществлять какую-то определенную функцию или вызывать синтез какого-то определенного белка, необходимого для размножения фага в зараженной клетке. Фенотип гП второго мутанта также свидетельствует о неспособности осуществлять какую-то необходимую функцию, но только другую, т. е. [c.310]

    Каждая из таких супрессорных мутаций является вместе с тем и мутацией гП, а поэтому можно изучить их реверсию к дикому типу г так же, как это делалось для мутации F O. Обнаружилось, что эти супрессорные мутанты, подобно мутантам F O, обычно не ревертируют к истинному дикому типу г. Вместо этого вновь образуются двойные супрессированные мутанты, способные размножаться на штамме К- Линии III я IV на фиг. 161 показывают расположение ряда мутаций г11, выделенных в качестве супрессора к двум супрессорам F 9 и F 7. Видно, что эти вторичные супрессорные мутации также происходят вблизи исходного мутантного участка F O в гене rllB. Точно таким же образом можно выделить и супрессоры к супрессорам супрессоров. Так было выделено в общей сложности около 80 независимых мутаций rll (включая мутацию F O), каждая из которых является супрессором некоторых других мутаций в том же наборе и располагается на сравнительно небольшом участке гена гПВ. Следует, однако, иметь в виду, что двойные мутанты, несущие мутацию и ее супрессор (и, следовательно, способные образовывать стерильные пятна па штамме К), образуют на обычном штамме Е. oli стерильные пятиа различных типов. Часть этих стерильных пятен почти или совершенно не отличается от пятен истинного дикого типа, тогда как мутантный характер других распознается легко и они довольно сильно напоминают стерильные пятна типа г. [c.330]


    В 1914 г. В. Генри обнаружил среди выживших после облучения ультрафиолетовым светом бактерий большое количество, как он считал, наследственных вариантов, отличающихся от нормального типа по таким свойствам, как морфология колоний и патогенность. Из этого наблюдения Генри заключил (за 13 лет до того, как Мёллер доказал мутагенное действие рентгеновских лучей на плодовую мушку), что ультрафиолетовые лучи мутагенны для бактерий. Однако доказательство этого утверждения пришло лишь много лет спустя с расцветом в сороковых годах генетики бактерий, когда Демерец показал, что среди 10 клеток Е. соИ штамма Топ (чувствительного к фагу Т1), выживших после облучения определенной дозой ультрафиолетовых лучей, доля мутантов Топ более чем в тысячу раз превышает спонтанный уровень этих мутантов среди необлученных бактерий. Вскоре ультрафиолет стал одним из наиболее широко распространенных мутагенов, используемых для получения мутантов бактерий. Многие мутанты, которые упоминались в предыдущих главах, были отобраны среди клеток, выживших после облучения ультрафиолетом немутантного родительского штамма. Так, например, были получены использованные в опытах по конъюгации (гл. X) Hir- и Р -штам-мы Жакоба и Вольмана с множественными мутациями, а также мутанты Тгр Яновского, использованные для изучения тонкой генетической структуры генов trp (гл. XIV). Однако, хотя молекулярный механизм спонтанных мутаций, а также мутаций, индуцированных аналогами оснований и акридиновыми красителями, к 1960 г. был достаточно хорошо изучен (см. гл. XIII), выяснение механизма мутаций, вызванных ультрафиолетом — исторически первым и долгое время наиболее широко распространенным бактериальным мутагеном, — задержалось до тех пор, пока не был выяснен механизм репараций. [c.381]

    Системным программистам хорошо известно, что даже небольшие изменения программы могут существенно повлиять на результаты ее реализации. Точно также мутация одного контролируюшего гена приводит к грубому искажению родословного древа. Это положение хорошо иллюстрируется гак называемыми гетерохронными мутациями, в результате которых некоторые наборы клеток ведут себя согласно правилам, действующим на ином этапе нормального развития. Например, дочерняя клетка может вести себя подобно материнской или еще более ранним нредшественницам, а ее потомки воспроизводят свойственный им фенотип и г. д. Таким образом, фрагмент генеалогического древа воспроизводится несколько раз и развитие всего организма нарушается. Для объяснения этого феномена на рис. 16-35 представлены эффекты серии мутаций гена Пп-14. Вместо того чтобы следовать нормальной схеме клеточной дифференцировки. характеризующей последовательную смену 1-го. 2-го, 3-го и 4-го личиночных возрастов с последующим торможением делений, многие клетки мутантов по Ип-14 воспроизводят схему, характерную для 1-го личиночного возраста, проходя по 5-6 циклов линьки и продолжая производить кутикулу незрелого типа. Другие мутации этого гена имеют обратный эффект, вынуждая клетки достигать зрелого состояния преждевременно, что сопровождается утратой промежуточных стадий. В результате животное достигает дефинитивной стадии, обладая аномально малым количеством клеток. Такое преждевременное развитие реализуется у мутантов, характеризуемых дефицитом нормальной активности Ип-14 задержки развития наблюдаются у мутантов с аномально высоким уровнем активности данного гена. Таким образом, эффект продукта гена Нп-14 состоит как бы в поддержании клеток в молодом состоянии и, по всей вероятности, нормальное развитие подразумевает постепенное ограничение синтеза этого продукта по мере взросления животных. [c.90]

    Транзиции и трансверсии часто приводят к мисденс-мутациям (мутациям с изменением смысла), поскольку вызывают замену в белке одной аминокислоты на другую. Если кодируемая мутантным геном аминокислота оказывается сходной с той, которая кодировалась геном дикого типа (т. е. исходным родительским геном), то возникает мутантный фенотип лишь с частично нарушенной функцией (1еаку-мутант). Часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), которые обусловлены появлением кодонов, не кодирующих никакой аминокислоты. В этом случае синтез белка на измененном кодоне прерывается, а образующиеся незавершенные фрагменты белковой молекулы, как правило, функционально неактивны, в частности из-за быстрого их протеолиза. При протяженных делециях, удаляющих значительную часть гена, также синтезируются неактивные фрагменты белковых молекул. [c.71]

    Конструирование штаммов на основе ступенчатого отбора существенно упрощается и ускоряется, если использовать селективные и полуселективные методы, позволяющие отбирать нужные мутанты из большой популяции клеток. Многие из таких методов основаны на использовании структурных аналогов естественных метаболитов и субстратов. Например, в селекции продуцентов аминокислот широко применяют аналоги этих соединений. Действуя как ретроингибиторы или корепрессоры, аналоги выключают синтез естественных метаболитов, однако не могут заменить их функционально. Более того, нередко аналоги подавляют ферментативные реакции, в которых участвуют природные соединения. Поэтому на минимальной среде с аналогом выживают и образуют колонии лишь те клетки, у которых нарушены механизмы негативной регуляции биосинтеза соответствующей аминокислоты и которые вследствие этого избыточно ее синтезируют. (Устойчивость к аналогу могут вызывать также мутации, которые блокируют его поступление в клетку.) Часто проводят несколько этапов селекции, используя различные аналоги или повышающиеся концентрации одного и того же аналога, а также получая мутации ауксотрофности и мутации, вызы- [c.79]

    Рифампицин — чрезвычайно эффективный ингибитор бактериальной РНК-полимеразы при концентрации антибиотика 2-10 М степень ингибирования достигает 50%. Рифампицин не препятствует связыванию полимеразы с ДНК, но ингибирует инициацию транскрипции. У мутантов Е. соИ, резистентных к рифампицину (/- /-ген), образуется РНК-полимераза с измененной -субъединицей (иногда это проявляется и в изменении электрофоретической подвижности). Родственный антибиотик стрептолидигии также связывается с -субъединицей РНК-полимеразы и блокирует элонгацию. На хромосомной карте мутации, обусловливающие резистентность к этому антибиотику, располагаются очень близко к /-мутациям. [c.208]

    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]

    Наоборот, в отнощении ячменя нет столь четких результатов. Если и были получены мутанты, имеющие количественные и качественные отличия по содержанию их запасного белка, то один Riso 56 (или Ног-2са) соответствует мутации структурного локуса Ног-2 [154]. У фасоли также было обнаружено существование доминантного гена, действие которого значительно уменьшает количество продуцируемого фазеолина [16]. Вероятно, что будут выявлены и другие типы модели регуляции. Однако и эти упомянутые результаты обнадеживают и ясно показывают, на какие новые пути ориентированы исследования. [c.61]

    Нейробиологи, по аналогии с классической модельной системой генетиков — Е.соЫ, надеялись, что плодовая мушка дрозофила послужит им также успешно в качестве модельной системы. Имя мушки Droso-phila или любяшая росу указывает на особенность ее поведения она имеет биологические часы с 24-часовым ритмом и особенно активна на рассвете. Имеются мутации с 19- и 28-часовыми ритмами, а также мутант, вообще не имеющий ритма и активный целый день. Было выделено много других точечных мутаций, влияющих на движение, зрительную память и половое поведение. Всего известно более [c.361]

    Изучение индукции р-галактозидазы у Е. соИ позволило установить, что рост клеток на среде с лактозой происходит не в результате отбора мутантов, у которых способность использовать лактозу есть следствие мутации. Способностью синтезировать этот фермент обладают все клетки. Было также показано, что в процессе индукции происходит не активирование уже имеющегося в клетках фермента Р-галактозидазы, а его синтез de novo из аминокислот. [c.121]

    Процесс выделения полисахаридов можно облегчить путем изменения поверхностных свойств микроорганизма-продуцента (например, за счет удаления поверхностного полимерного ма-териала типа липополисахаридов) В подобных мутантных культурах происходит аутоагглютинация и спонтанная флоку-ляция, что уменьшает число необходимых операций центрифугирования. Однако нужно внимательно следить зачтем, чтобы у таких мутантов клеточный материал, например белки, не утекал из периплазматического пространства или не происходил лизис с загрязнением конечного продукта. К другим изменениям относятся мутации капсулообразующих организмов, приводящие к появлению стабильных, образующих слизи бак терий, а также получение устойчивых к фагам мутантов, что уменьшает риск заражения фагом в процессе производства. [c.233]

    На обычных твердых средах лишь немногие мутации можно непосредственно обнаружить по изменению пигмента, измененному росту колоний или иным признакам. Некоторые мутантные признаки выявляются при добавлении индикаторов или красителей. Для идентификации мутантов, отличающихся от родительских клеток пониженными или повышенными требованиями к питанию, приходится сравнивать рост тех и других на двух средах. Если, например, мутант утратил способность к синтезу лейцина, которой обладали клетки родительского (дикого) типа, то он будет расти только на той среде, к которой добавлена эта аминокислота. Мы называем такого мутанта ауксотрофны(м по лейцину, т.е. нуждаюнщмся в лейцине (1еи ), а также дефектным по лейцину, противопоставляя ему прототрофный дикий тип (leu ). Если в клеточной суспензии присутствуют одновременно и мутантные клетки 1еи , и про-то трофные клетки дикого типа, то эти два типа можно различить по росту на двух разных средах. Метод, обычно применяемый для выявления таких дефектных мутантов, представлен на рис. 15.8. [c.449]

    После воздействия, индуцирующего мутации, и многочасового роста бактериальную суспензию инкубируют в среде с глюкозой, но без азота. Это делается для того, чтобы дать возможность клеткам использовать оставшиеся растворимые соединения азота. Через несколько часов добавляют пенициллин и сульфат аммония и проводят инкубацию (на этот раз продолжительностью до 24 ч.). Прототрофные родительские клетки растут, и пенициллин их убивает, тогда как ауксотрофные мутанты, нуждающиеся в определенной аминокислоте, не растут, и это позволяет им уцелеть. Затем суспензию освобождают от пенициллина промыванием или добавлением пенициллиназы и высевают на агаризованную среду, содержащую аминокислоты. Среди вырастающих в таких условиях бактерий процент ауксотрофных клеток оказывается более высоким (помимо них растут также прототрофные клетки, выдержавшие обработку пенициллином). Если бактерии устойчивы к пенициллину, то с той же целью можно применить другие антибиотики (новобиоцин, циклосерин, колистин, канамицин). Для избирательного уничтожения растущих клеток используют и такое явление, как летальный синтез . [c.451]

    Мутанты с измененной чувствительностью к эффектору. Мутантов, у которых изменена чувствительность какого-нибудь аллостерического фермента к эффектору, можно также выделять с помощью совершенно иного принципа, а именно как ревертантов к ауксотрофии. При этом поступают следующим образом. Сначала вьщеляют мутантов с дефектом регуляции, ауксотрофных в отношении метаболита, который хотят получить как конечный продукт, накапливающийся в среде. Затем среди этих ауксотрофных мутантов отбирают таких, у которых неспособность к синтезу данного метаболита обусловлена дефектом в аллостерическом ферменте соответствующего пути биосинтеза После этого из полученной мутантной популяции выделяют прототрофных ревертантов, которые не нуждаются в этом конечном продукте, так как сами спо-собнь его синтезировать. Среди ревертантов отбирают тех, которые выделяют нужный продукт в среду. Их можно выявить биоавтографиче-ским методом (разд. 10.2.2) или распознать по росту сателлитных колоний. О таком мутанте, полученном в результате двукратного отбора, можно составить себе следующее представление. У него после первой мутации перестал функционировать каталитический центр одного из аллостерических ферментов. Вторая мутация затронула структуру (конформацию) всей белковой молекулы, в результате чего каталитическая активность фермента восстановилась, но аллостерическая чувствительность оказалась утраченной. Как в этом, так и во многих других случаях для выделения желательного мутанта необходим ряд этапов, включающих мутагенез и отбор. [c.500]

    Перутц и Леман классифицировали многие мутации и установили корреляцию между этими мутациями и изменениями конформаций, а также вызываемыми ими клиническими последствиями. Они обнаружили, например, что замещение находящегося рядом с гемом фенилаланина валиком приводит к тому, что гем вываливается из белка. Такой аномальный гемоглобин известен под названием гемоглобина Торино , а его образование приводит к возникновению анемии. В другом случае, при образовании так называемого гемоглобина Бостона, гистидин, связанный с атомом железа, замещается тирозином. Образование этого мутанта приводит к таким болезням-, как цианоз и метгемоглобинанемия . На основании рентгеноструктурных исследований было высказа- [c.263]

    Кроме того, вследствие мутаций в каждой из цепей гемоглобина возможна замена по крайней мере одной аминокислоты. В настоящее время известно около 100 таких мутантов [94, 170]. Изменения в составе гемоглобина можно произвести и искусственно (см. работу 18]) различными способами 1) путем образования гибридов с использованием а- и -цепей из гемоглобйнов различных видов 2) в результате протеолитического переваривания С-концевых остатков под действием карбоксипептидазы и 3) химическим модифицированием, например, сульфгидрильных групп цистеиновых остатков. Можно, разумеется, изменять валентность железа, а также природу шестого лиганда в координационной сфере железа, и даже удается получить гемоглобины, в которых состояние железа в каждой из цепей различно, например, путем смешивания растворов N- и 02. Из многих гемоглобйнов и миоглобинов удается удалить без денатурации белка железопорфириновый комплекс, а затем реконструировать полный белок из белка и порфиринового комплекса, взятых из различных источников, или вместо железопорфиринового комплекса взять при этом порфириновый комплекс другого металла (разд. 7.1 и 7.4). Исследование мутантных форм и химически модифицированных гемоглобйнов существенно расширило наши знания о природе реакций гемоглобина, и в последующих разделах мы часто будем использовать результаты, полученные с помощью мутантных и модифицированных белков. [c.148]

    Вес используемого статистического фактора, от которого зависит судьба мутации, в какой-то мере повышается при естественном отборе, но сравнению с проволимой человеком селекцией. В системе активного ила налицо значительно большее разнообразие распространенных условий среды, а также специализированных ниш, позволяющих сохраняться и совершенствоваться ряду мутантов, отвергаемых условиями искусственного отбора. [c.31]

    При столь возрастающем исходном потенциале возникших мутантов, анализируемых естественным отбором, есть реальные шансы на полезное применение химического мутагенеза в рассматриваемых системах естественного отбора. Конечно, потери в условиях естественного отбора также велики, но большее абсолютное количество выживших и С0не])11ича101цнх по приспособленности мутаций не оставляет сомнени п сохранении по всем организмам большей их части, чем при искусственном отборе. [c.31]

    Применяемая сейчас система выбраковки в сельскохозяйственной селекции является лучшей из возможных и хорошо себя оправдывает, по это пе позволяет недооценивать собственные крупные возлшжности, открытые перед естественным отбором. Естественный отбор отмечен большей об7.ективностью и экономичностью, предупреждающей потери мутантов, отвечающих условиям окружающей среды. По этой причине химический мута тенез, повышающий частоту всех типов мутаций, представляет на суд естественного отбора расширенный круг более приспособлен-лых наследственных перемен. К этому добавляется также большая свобода естественного отбора в закладке новых направлений микроэволюции, чем это делает искусственный отбор, значительно менее критический и подвижный в этом отношении. [c.32]

    Закономерностей возникновения системных мутаций типа ком-пактум и сферококкум не установлено в зависимости от типа растворителя те и другие мутанты отмечены в вариантах обработки НАМ без растворителей, а также в случае растворения НАМ в ДО, ДМСО и СЭ. [c.68]


Смотреть страницы где упоминается термин Мутанты II также Мутации: [c.264]    [c.89]    [c.68]    [c.211]    [c.251]    [c.90]    [c.89]    [c.174]    [c.111]    [c.113]    [c.234]    [c.74]    [c.492]    [c.186]    [c.239]    [c.363]    [c.46]    [c.47]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте