Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись азота молекулярным водородом

    Для разделения постоянных газов (водород, азот, кислород, двуокись углерода и метан) были использованы активированный уголь [97, 130], силикагель [240] и окись алюминия [98]. На активированном угле легко можно отделить водород и метан от остальных компонентов. Азот от кислорода, однако, не отделяется, а смесь азота и кислорода от двуокиси углерода отделяется лишь с трудом. Хорошие результаты были получены при применении молекулярных сит [137]. [c.513]


    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включающих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. [c.257]

    На хорошо активированных молекулярных ситах газы выходят из колонки при комнатной температуре в следующем порядке водород, кислород (аргон), азот, метан, окись углерода при обычных условиях кислород и аргон элюируются совместно. Для их разделения необходимы колонки длиной 4,5-9,0 м. Молекулярные сита необратимо сорбируют двуокись углерода, а также сероводород, двуокись серы, хлористый водород и другие агрессивные газы. Сита 5А используют при повышенных температурах для селективного удаления неразветвпенных парафинов и олефинов из их смеси с разветвленными углеводородами. [c.63]

    Газы, используемые в качестве подвижной фазы, выбирают в зависимости от природы разделяемой смеси и от используемой системы детектирования. Необходимо, чтобы эти газы были инертны по отношению к адсорбентам и к неподвижным фазам, а также к парам анализируемых образцов. В качестве газов-носителей чаще всего используют азот, водород, гелий, аргон, двуокись углерода, а в отдельных случаях — воздух или кислород. Газы отбирают обычно из стальных баллонов и, в случае необходимости, подвергают предварительной очистке и осушке. Очень чистый водород и кислород получают электролизом. С газами боле высокого молекулярного веса (например, с азотом) достигается лучшее разделение, потому что диффузия анализируемых веществ в этом случае меньше. При наименее чувствительном способе детектирования (по теплопроводности) более выгодны газы с низкой вязкостью и с высокой теплопроводностью. [c.493]

    На стр. 157 приведен предел воспламенения смесей паров перекиси водорода и воды при атмосферном и уменьшенном давлении. На рис. 62 и 63 показано влияние изменения природы и концентрации присутствующего инертного газа на предел воспламенения при общем давлении 200 мм рт. ст. 118]. Замена части водяного пара гелием, азотом или кислородом не изменяет предела воспламенения двуокись углерода оказывает известный тормозящий эффект. Истолкование этих данных затруднительно, так как роль инертного газа может быть обусловлена его теплоемкостью, отражающейся на температуре адиабатической реакции, теплопроводностью, влияющей на скорость отвода тепла из реакционной зоны, действием его на скорость, с которой образовавшиеся в реакции свободные радикалы могут уходить путем молекулярной диффузии, или эффективностью этого газа в отношении переноса энергии ири тройных соударениях. Вероятно, наиболее существенное значение имеет теплоемкость. Адиабатическая температура реакции предельного воспламеняющегося состава для системы перекись водорода—вода составляет, например, 780" при общем давлении 1 ат и 880° при 200 мм рт. ст. эти значения 1Ч)раздо ниже встречающихся в большинстве систем из топлива и окислителя. [c.380]


    Для очпстки водорода применяются адсорбционные процессы с переменным давлением [2141. Типичным исходным материалом для получения водорода служит водяной газ, содержащий в качестве примесей воду, метан, окись и двуокись углерода и азот. Молекулы этих примесей имеют дипольный или квадрупольный момент пли значительно больший молекулярный вес, чем водород, [c.724]

    Эффект сепарации можно повысить, если в разделяемую смесь добавить инертный по отношению к смеси газ с более низкой молекулярной массой. Содержание инертного газа должно превышать 60% обшего объема смеси. В качестве инертного выбирают газ с как можно меньшей молекулярной массой (например, водород или гелий). Можно использовать также азот, метан, этан, окись углерода, двуокись углерода и воду. При использовании инертного газа процесс может происходить при давлении исходной смеси выше 0,133 МПа (практически до 50 МПа). В этом случае верхним пределом является давление сжижения при рабочей тем- [c.165]

    Углеводородная часть газообразных продуктов реакции (Са—С ) и двуокись углерода анализировались на хроматографе ХЛ-4 с использованием составной десятиметровой колонки. Водород, кислород, азот и метан определялись на хроматографе ХЛ-3. В качестве наполнителя использовались молекулярные сита 13 X, газ-носитель— гелий и аргон. Сероводород определялся методом проявительной хроматографии. [c.30]

    Величина молекулярной диффузии уменьшается в два раза, если вместо гелия или водорода в качестве газа-носнтеля применять азот или двуокись углерода, особенно, когда велико сопротивление проходу массы. [c.75]

    Грэхам первый доказал, что водород, окклюдированный палладием, особенно реакционно-способен. Рамзай [66] нашел, что водород, диффундируя через палладий, восстанавливает окись азота и двуокись азота при температурах, при которых эти газы неактивны. Сивертс [81] полагал, что особая реакционная. способность водорода в момент выделения имеет аналогию в повышенной активности окклюдированного или диффундирующего газа. Хойтсема [44] и Винкель-ман [101] объясняли повышение активности расщеплением молекулярного водорода на атомы в процессе диффузии и окклюзии. Сабатье и Сендеренс [73] приписывали способность никеля ускорять реакцию между водородом и ненасыщенными углеводородами высокой растворимости водорода и предполагали образование гидридов в качестве промежуточных продуктов. Сивертс [81] противопоставил этой точке зрения утверждение, что слово гидрид как название химических соединений, образованных щелочными металлами и [c.129]

    В другом приборе химик проводит окисление в камере сгорания, а продукты подаются потоком гелия в восстановительную камеру, где удаляется избыток кислорода и различные окислы азота восстанавливаются до молекулярного азота. Результирующая смесь (СО2, Н2О, N2 и Не) приводится в термическое равновесие под давлением около двух атмосфер, а затем через систему пробоотбора поступает в Ьерию кювет для измерения теплопроводности. Между первой парой кювет находится поглощающая ловушка, содержащая обезвоживающий реагент, который удаляет из потока газа водяные пары. Количество водорода в исходном образце измеряется по разности в теплопроводности, вызванной удалением воды. Аналогичные дифференциальные измерения проводят для второй пары кювет, расположенных по две стороны ловушки, которая удаляет двуокись углерода. Содержание азота в оставшейся смеси гелий — азот определяют сравнением теплопроводности в кюветах со смесью и с чистым гелием. Все сигналы детекторов направляются в самописец, и с помощью соответствующих калибровочных факторов по величине пиков определяют процентный состав образца. После ввода образца процесс производится автоматически вплоть до стадии интерпретации графиков. [c.544]

    ЛОЗЫ В воде (частота 7Ь Мгц) Вайслер отмечал уменьшение молекулярного веса до определенного предела, В дегазированной среде, в которой кавитация сильно ограничена, деполимеризации не наблюдалось. К аналогичным выводам принпи Праудхомм и Габер при исследовании толуольных растворов полистирола и водных растворов карбоксиметилцеллюлозы. Дальнейшие исследования показали, что кавитация зависит от природы растворенного газа [32, 33, 38]. Так, кавитационные пузырьки появляются относительно легко в присутствии азота, водорода, аргона или метана аммиак и двуокись углерода тормозят это явление, а ЗОг замедляет его даже при больших интенсивностях ультразвуковых волн. Берлин обратил внимание на то, что влияние природы газа нри ультразвуковой деструкции связано не с химическими свойствами, а со способностью газов растворяться в среде распространения ультразвуковых волн. [c.227]


    Найтингел и Уолкер 8] разработали метод одновременного определения углерода, водорода и азота быстрым сожжением (в течение 30 сек.) анализируемой пробы с помощью индукционной печи. В качестве окислителей использованы перманганат серебра и окись меди. Быстрое сожжение пробы с катализатором в потоке гелия позволяет непосредственно без предварительного концентрирования разделять простые продукты окисления в хроматографической колонке. Навеску анализируемого вещества, смешанного с окислителем, сжигали в угольном тигле, футерованном кварцем. Продукты окисления проходили через реактор, заполненный на /з окисью меди и на /з металлической медью для завершения окисления и восстановления окислов азота. Далее газовый поток проходил через реактор с карбидом кальция, где вода превращалась в ацетилен. Карбид кальция в реакторе заменяли новым перед каждым анализом. Смесь простых продуктов (азот, двуокись углерода, ацетилен) разделяли на хроматографической колонке с молекулярными ситами 5А. Среднее отклонение при определении углерода 0,52%, водорода 0,22%, азота 0,58%. [c.116]

    По-видимому, наилучшее разделение смеси водорода, кислорода, азота, метана и окиси углерода при комнатной температуре было достигнуто на молекулярных ситах 5 А [22] и 13Х [20]. Элюирование сильно сорбирующихся газов, таких, как окись азота и двуокись углерода, осуществимо лишь при программировании температуры разделения [36—38]. [c.269]

    Окись углерода, двуокись углерода, метан. Эти газы находятся обычно в смеси с воздухом. Грин с сотрудни-камиз разделили такую смесь на колонке длиной 3 м, наполненной активированным углем. Чтобы ускорить вымывание двуокиси углерода, колонку с момента начала анализа подогревали до 120 °С. Порядок вымывания следующий водород, кислород и азот (частичное разделение), окись углерода, метан, двуокись углерода. Если требуется разделить воздух, нужно применить молекуляр. ное сито 5 А, однако в данном случае порядок вымывания другой водород, кислород, азот, метан, окись углерода. Колонку длиной 5 м подогревают до 100 X, газом-носителем является гелий со скоростью потока 25 мл/мин. Нужно отметить, что двуокись углерода и некоторые углеводороды адсорбируются на молекулярном сите необратимо, поэтому их следует удалить из смеси до разделения ее. На силикагеле даже на длинных колонках окись углерода и метан вымываются вместе . [c.115]

    А—последовательное соединение всех колонок —колонка с молекулярным ситом 5А, отключена В—обратная продувка Г—последовательное соединение всех колонок, выделение легких газов из третьей колонки У—водород 2—кислород 3—азот 4—метан 5—окись углерода 6—этан 7—этилен 8—пропан 9—двуокись углерода 10—пропилен 11—нзо-бу-тан 12—ацетилен 13—н-бутак 14—бутен-1 15— эо-бутен 16—транс-бутен-2 77—изо-пен-тан 18— мс-бутен-2 19—н-пентан 20—З-метилбутен-1 21—дивинил 22—пентен-1 23—2-ме-тилбутен-1 24—тра.чс-пентен-2 25—г с-пентен-2 26—пентадиен-1,4 27—2-метилбутен-2  [c.262]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включа-эющих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных т металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, сили-жагелей, алюмогелей и молекулярных сит. Однако вследствие очень [c.228]

    А — последовательное соединение всех колонок Б — колонка с молекулярным ситом 5А отключена В — обратная продувка Г — последовательное соединение всех колонок, выделение легких газов из третьей колонки 1 — водород 2 — кислород з — азот 4 — метан 5 — окись углерода 6 — этан 7 — этилен — пропан 9 — двуокись углерода 10— пропилен 11 — изобутан 12 — ацетилен 13 — и-бутан 14 — бутек-1 IS — изобутен 16 — треше-бутен-2 17 — изопентан IS — чие-бутен-2 19 — к-пентан 20 — 3-метилбу-тен-1 21 — дивинил 22 — пентен-1 2S — 2-метилбутен-1 24 — тромс-пентен-2 25 — цис-пентен-2 2в — пентадиен-1,4 27 — 2-метилбутен-2 28 — к-гексан и высшие. [c.232]

    Как показано на рис. 3.12, на углеродных ситах В можно разделять окись углерода, метан, двуокись углерода, кислород и азот на одной колонке, однако разделение двух последних газов не такое хорошее, как на обычных молекулярных ситах. Боллман и Мортимер /1/ показали, что применение молекулярных сит 5А в сочетании с углеродными ситами В обеспечивает хорошее разделение водорода, азота, метана, окиси углерода, двуокиси углерода, сероводорода, этана, двуокиси серы и пропана. [c.66]

    Молекулярные сита 5А и I3X. Колонки с молекулярными ситами весьма пригодны для газо-адсорбционной хроматографии. Они разделяют водород, неон, кислород-Ь аргон, азот, метан, криптон, окись углерода и ксенон. Двуокись углерода, водч, сероводород и другие сильно полярные и высококипящие соединения с малым критическим диаметром, позволяющим им проникать в поры сит, удерживаются в колонке. Молекулярное сито 5А сильнее удерживает компоненты пробы, чем сито 13Х. [c.69]


Смотреть страницы где упоминается термин Двуокись азота молекулярным водородом: [c.48]   
Лекции по общему курсу химии (1964) -- [ c.234 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Азот молекулярный водородом

Азот молекулярный двуокись азота

Водород молекулярный



© 2024 chem21.info Реклама на сайте