Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

растениях молекулярный вес

    Эти высокомолекулярные соединения углеводной природы широко распространены в растениях. Молекулярная масса пектиновых веществ от 50 ООО до 300 ООО. Они входят в состав клеточных стенок, склеивают растительные клетки между собой, накапливаются в фруктах, ягодах, клубнях, корнеплодах и стеблях растений. [c.171]


    Как же это происходит Вопрос о механизме фиксации растениями молекулярного азота воздуха до сих пор еще окончательно не выяснен. Однако известно, что клубеньковые бактерии, попадая через корневой волосок в корень бобового растения, проникают во внутренние его покровы. Под воздействием бактерий клетки корня начинают усиленно делиться на множество мелких клеток. Вскоре мелкие клетки укрепляются и начинают неравномерно развиваться. Это приводит к тому, что на корне растения появляется бесформенный, уродливый нарост в виде клубня. [c.40]

    Пектиновые вещества всегда содержатся в ягодах, фруктах, клубнях и стеблях различных растений. Молекулярные веса пектинов разного происхождения неодинаковы. Пектин апельсина имеет молекулярный вес 40 000—50 ООО, а пектин яблок, груш, слив — 25 000—35 ООО. [c.362]

    Молекулярный азот составляет 78% молекул атмосферы, ио растениям азота может не хватать. Объясните, почему это возможно. [c.526]

    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]

    Среди жирных кислот наземных животных и растений преобладает кислота С]8, а среди морских высших и низших организмов— кислоты С20—С24- в жирах наземных организмов единственным представителем ненасыщенных кислот является кислота is-В жирах морских организмов — как высших, так и низших — содержится много высоконенасыщенных кислот большой молекулярной массы [9, с. ПО]. [c.27]


    Из этих двух типов сульфокислот зеленые кислоты имеют меньшее промышленное значение. Они представляют собой одноосновные сульфоновые кислоты с молекулярным весом от 150 до 400. Зеленые кислоты понижают поверхностное натяжение и применяются в композициях жидкостей для опрыскивания растений и в технических мылах. [c.399]

    Важной задачей в защите растений является борьба с вредными грибками. Для этой цели в большом масштабе применяют различные препараты меди (неорганические соли, медный комплекс 8-оксихино-лина) и молекулярную серу. Однако и здесь наблюдается тенденция переходить к таким органическим веществам, которые более эффективны и могут быть использованы в меньших дозах. Из новых фунгицидов, в частности, применяются следующие  [c.524]

    Фотосинтез в зеленых растениях. При процессе ассимиляции или фотосинтеза в зеленых растениях СО2 и вода превращаются в углеводы и молекулярный кислород, причем необходимую для этих процессов энергию дает свет  [c.982]

    Активация молекулярного кислорода за счет комплексообразования имеет большое биохимическое значение. Классическим примером является присоединение кислорода к гемоглобину (см. стр. 625). Образование комплексов с участием молекул N2 в качестве лигандов играет важную роль при фиксации атмосферного азота клубеньковыми растениями, а также в процессе каталитического синтеза аммиака. По-видимому, в естественных условиях (обычные температура и давление) биохимическое связывание атмосферного азота осуществляется с участием комплексов Ре и Мо. [c.464]

    Понижение температуры замерзания растворов имеет большое значение для живых организмов. Так, сок в их клетках представляет собой в основном раствор органических веществ его температура замерзания лежит ниже 273 К, поэтому организмы не погибают при пониженных температурах. Характерно отметить, что зимостойкость растений обусловлена концент[)ацией клеточного сока чем выше концентрация, тем более низкие температуры может переносить растение. Процесс превращения более высокомолекулярных соединений в соединения с меньшей молекулярной массой при наступлении холодов (например, крахмала в углеводы типа глюкозы), протекающий в клетках растений, также вызван стремлением повысить концентрацию клеточного сока. По этой же причине хорошо сохраняются овощи и фрукты при температуре 272 К- [c.106]

    Среди явлений, происходящих на границе раздела трех фаз чаще всего встречаются и имеют большое практическое значение явления смачивания и растекания. Условия смачивания поверхности твердого тела жидкостью, характеризующие молекулярное взаимодействие различных фаз, играют большую роль в Процессах проникновения жидкости, и в частности воды, в каг пиллярные системы — различного рода пористые тела, грунты и почвы. Возможность изменения условий смачивания используется при приготовлении составов для борьбы с вредителями растений, для придания водонепроницаемости тканям, стенным покрытиям и т. д. Особо важное значение имеют условия сма-. чивания для осуществления процесса флотации, широко при меняющегося при добыче полезных ископаемых. Количественная оценка смачиваемости может быть осуществлена различными методами. [c.133]

    Важнейшие фотохимические реакции — фотосинтез у растений, образование озона из молекулярного кислорода под действием ультрафиолетовой радиации солнца, фотография и др. [c.181]

    Крахмал. Крахмал накапливается в клубнях, плодах, семенах некоторыми растениями в качестве резервного материала (энергии) (злаки, картофель, рис, кукуруза, пшеница). Крахмал — белый порошок. Зерна крахмала состоят из двух продуктов более растворимого — амилозы (20%) и менее растворимого — амило-пектина, которые отличаются по молекулярной массе и строе 1ию. Вследствие присутствия амилозы крахмал окрашивается иодом в синий цвет. Молекула амилозы имеет линейное строение, амилопектина — разветвленное. Амилоза и амилопектин — полимеры, мономером которых является а-глюкоза. Процесс образования крахмала можно представить так  [c.248]

    Организмы животных содержат сравнительно немного углеводов.. Напротив, в растениях они образуют основную массу тканей. Последние состоят главным образом из клетчатки, имеющей тот же состав, что и крахмал, но еще больший молекулярный вес. [c.541]

    Крахмал (СбН дОд),, — один из самых распространенных полисахаридов. Встречается практически во всех растениях, выполняя роль запасного питательного продукта. Продуктом полного гидролиза крахмала яляется а-/)-глюкоза. При кислотном и ферментативном гидролизе крахмал расщепляется на ряд промежуточных соединений, состоящих из меньшего числа глюкозных остатков. Характерной реакцией на крахмал является его взаимодействие с иодом, сопровождающееся образованием окрашенного в синий цвет продукта реакции. Эту реакцию часто используют для контроля хода гидролиза крахмала. По мере распада молекулы крахмала и образования продуктов с меньшей относительной молекулярной массой синяя окраска постепенно переходит в красную и затем, когда реакция гидролиза заканчивается, раствор полностью обесцвечивается  [c.398]


    Глобулины — белки, не растворимые в воде, но растворимые в разбавленных солевых растворах свертываются при нагревании. Имеют большую молекулярную массу, чем альбумины. Представители глобулины молока, яйца, крови белки мышц (миозин), семян растений. [c.297]

    В клетках животных имеются все структурные элементы указанных систем регуляции. Одним из таких элементов в клетках тканей животных является регуляторньш белок (С-белок), способный связывать ГТФ (гуа-назинтрифосфат). О-белки играют центральную роль в механизмах передачи сигнала с поверхности внутрь клеток животных. Подобные белки обнаружены в плазмалемме корней высших растений. Молекулярная масса (ММ) ГТФ-связывающих белков у растений и животных примерно равны 90 кДа. Содержание этих протеидов в плазмалемме корней кукурузы составляет - 0,4 % всего мембранного белка. [c.51]

    Существует несколько биохимических методов, позволяющих количественно измерить изменения, происшедшие в гомологичных макромолекулах близко- или отдаленнородственных видов в процессе их дивергенции. Объектом таких исследований служат обычно белковые молекулы, молекулы ДНК, но иногда и другие вещества, например вторичные метаболиты растений. Молекулярные данные проливают свет на филогенетические взаимоотношения. Они породили также некото(рые полезные дискуссии, которые мы здесь вкратце обсуднм . [c.356]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    Целлюлоза — один из самых основных видов полимерных материалов, имеет волокнистое строение и является главной составной частью стенок растительных клеток и вместе с сопровождаю-шими ее вешествами (никрустами) составляет твердый остов всех растений. В состав древесины кроме целлюлозы входит большое количество и других органических веществ гемицеллюлозы, лигнина, смол, жиров, белковых веществ, красителей. На долю минеральных веществ приходится всего 0,3—1,1%. В сухой древесине находится от 40 до 60% так называемой а-целлюлозы, т. е. целлюлозы, нерастворимой в 17,5—18%-ном водном растворе едкого натра при комнатной температуре. Молекулярная масса технической целлюлозы, имеющей регулярное и строго линейное строение, колеблется от 50 000 до 150 000 и выше. Целлюлоза придает растительной ткани механическую прочность и эластичность, образуя как бы скелет растения. [c.201]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Их молекулярная масса колеблется от 420 до 560 ( 27N4— СззК4). По своему строению они близки хлорофиллу растений и красящему веществу крови — гемину. [c.40]

    Сложные полисахариды, содержащие N-aцилглюкoзaминoвыe звенья, являются созданными природой переходами от целлюлозы, амилозы и других простых полисахаридов к протеинам и белкам. Они образуют в живых тканях растений и животных молекулярные комплексы как с полисахаридами, так и с про- [c.331]

    Ароматические углеводороды нефти могут иметь различное происхождение. Во-нервых, ароматические группировки содержатся уже и самом сапропелитовом материале на более или менее глубоких стадиях его изменения. В керогене эстонских сланцев X. Т. Раудсепн нашел до 26% ароматических систем конечно еще ие углеводородного характера, а так как ароматические кольца не уничтожаются, они переходят из одного класса органических соединений в какой-то другой класс и в конце концов в ароматические углеводороды. Постоянное содержание кислорода (часто и серы) в ароматических углеводородах, выделенных из нефти физическими методами, является возможно признаком, унаследованным от исходного материала. Последний мог содер-н ать ароматические системы лигнина водяных растений. Попадавшие в сапропелевые илы в виде растительного детрита остатки наземной флоры также могли повысить ресурсы ароматических структур. Значительное содержание ароматических углеродных атомов в гумусовых углях, несмотря на то что клетчатка их не содержит, иллюстрирует возможность значительного содержания ароматических систем и в исходном материале нефти. Во всяком случае речь мол ет идти только о полициклических ароматических системах, а, следовательно, и об углеводородах этого ряда. С этой точки зрения содержание кислорода именно в высших членах ароматического ряда, выделенных из нефти, показательно в том отношении, что эти углеводороды ближе к иачальному веществу нефти, чем углеводороды прочих рядов, особенно среднего и низкого молекулярного веса. Вместе с тем подкрепляется положение, что во всех нефтях близость группового состава характерна именно для выспщх фракций высокого молекулярного веса. Различные типы нефти в основном зависят от позднейших ее превращений. Разукрупнение высших гибридных углеводородов [c.124]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    В ТОМ, ЧТО ЭТОТ процесс обеспечивает наш мир кислородом и энергией та часть ее, которая превышает расход энергии на фотолиз воды (то есть на выделение кислорода), аккумулируется в результате ряда реакций, начинающихся с восстановления СО2, в виде энергии связей С — Н, С — С, С —О и др. Таким аппаратом в растениях служит хлоропласт, построенный из квантосом — макромолекул, размером 100X200 А, молекулярная масса которых достигает почти 1 000 000 (рис. 46). Интересно, что квантосомы, извлеченные из хлоропласта, не полностью лишены фотохимической активности — они выделяют кислород из воды, но не производят фотосинтеза. [c.137]

    Целлюлоза-главный строительный материал растений. Древесина приблизительно на 50% состоит из целлюлозы хлопчатобумажные нити представляют собой почти чистую целлюлозу. Целлюлоза состоит из неразветвленных цепей, построенных из остатков глюкозы ее молекулярная масса в среднем превышает 500000. Структура целлюлозы показана на рис. 25.12. На первый взгляд она очень напоминает структуру крахмала. Однако между ними имеется важное различие, которое заключается в способе связывания остатков глюкозы. Отметим, что в целлюлозе глюкоза находится в своей Р-форме. Ферменты, легко гидролизующие крахмалы, вовсе не гидролизуют глюкозу. Так, вы можете разжевать и проглотить фунт ( 0,5 кг) целлюлозы, не получив при этом вообще никаких калорий, хотя теплота сгорания целлюлозы в расчете на единицу массы почти не отличается от теплоты сгорания крахмала. В отличие от целлюлозы фунт ( 0,5 кг) крахмала обеспечивает значительный запас калорий. Дело в том, что крахмал гидролизуется в глюкозу, которая затем окисляется с выделением энергии. В отличие от крахмала целлюлоза не гидролизуется никакими ферментами, имеющимися в человеческом организме, и поэтому выводится из него неиспользованной. Многие бактерии содержат ферменты, называемые целлюлазами, которые гидролизуют целлюлозу. Эти бактерии присутствуют в пищеварительной системе жвачных животных, например лошадей, использующих целлюлозу в пищу. [c.458]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Метод исследования, основанный на измерении понижения температуры затвердевания растворов, называется криоскопи-ческим методом. Помимо определения молекулярных масс его используют для определения концентрации растворов, например для определения суммарной концентрации клеточного сока растений или концентрации почвенных растворов. [c.140]

    Принципиальную возможность той или иной реакции предсказывает химическая термодинамика (АОсО). Однако далеко не всегда термодинамически возможные реакции осуществляются в действительности. Например, все органические вещества, согласно принципам термодинамики, должны были бы достаточно быстро окисляться в углекислоту и воду молекулярным кислородом воздуха, так как этот процесс сопровождался бы значительным уменьшением энергии Гиббса. Существование растений, животных, залежей угля, нефти и т. д. обязано тем, что реакция окисления в действительности протекает исключительно медленно. [c.260]

    Если расчет свидетельствует о невозможности протекания реакции в данных условиях, т. е. если ДО > О, то, разумеется, бессмысленно пь[таться ее реализовать. Но и в том случае, когда согласно расчету процесс принципиально осуществим (АС< 0), он может не идти из-за каких-либо препятствий на его лути. И таких случаев не мало. Так, например, хотя многие углеводороды неустойчивы в отношении разложения на углерод и водород (см. Приложение I) и их неустойчивость в каждом гомологическом ряду возрастает с увеличен тем молекулярной массы и с повышением температуры, однако только при высоких температурах скорость их распада становится ощутимой . Для процессов горения АОт<. 0. Это значит, что все органические вещества должны окисляться кислородом воздуха. Однако и растения, и животные, и уголь, и нефть [c.106]

    У естественных высокополимеров п зависит от ряда биологических и физиологических факторов. В частности, степень поликонденсации целлюлозы различных растений далеко не одинакова. Например, средняя величина п у целлюлозы хлопка равна 10 800 ее макромолекула может быть выражена формулой (СбНюОз) 8оо- Этой формуле отвечает молекулярный вес 1 750 ООО. У льна же число структурных звеньев в макромолекуле достигает 36 ООО формула целлюлозы льна (СбНю05)за ооо. молекулярный вес 5 900 ООО. [c.234]

    Число глюкопирановых звеньев в молекулах целлюлозы и ее молекулярная масса колеблются в широких пределах, в зависимости от того, из каких растений или каким способом целлюлоза получена. В среднем молекулярная масса целлюлозы колеблется в пределах 300 000—500 ООО, а общее число глюкопиранозных звеньев в ее молекулах — 1800—3000. [c.264]

    Целлюлоза (СбНюОб) — основной полисахарид клеточных оболочек высших растений, его присутствием обусловлена прочность растительной ткани. Целлюлоза состоит из очень длинных цепочек остатков о-глюкозы, соединенных связью (1р—4) так же, как в целлобиозе. Относительная молекулярная масса целлюлозы составляет 10 —10 в зависимости от вида растения. Экспериментальные сложности, возникающие при исследовании молекул такого размера, не позволяют точно решить, имеет ли целлюлоза строение открытой цепи или образует гигантскую петлю, возможно с перекрестными связями. [c.284]


Смотреть страницы где упоминается термин растениях молекулярный вес: [c.126]    [c.189]    [c.378]    [c.66]    [c.237]    [c.81]    [c.15]    [c.263]    [c.247]    [c.231]    [c.234]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная генетика и развитие растений

Молекулярная теория индивидуального развития растений

Типы радиальной симметрии спиральные и винтовые фигуры встречаются у животных и растений, среди минералов и на молекулярном уровне



© 2024 chem21.info Реклама на сайте