Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геном постоянные изменения

    Гены исключительно стабильны по своему составу и функции. Тем не менее они могут изменяться, или мутировать, что сопровождается изменением их функции изменившийся ген называется мутантным. Гены могут мутировать под действием постоянно существующих естественных причин в этом случае процесс нх изменения называется спонтанной мутацией. Они могут также мутировать в результате искусственного возде ствия посторонних факторов, например некоторых химических веществ или некоторых [c.59]


    Генная инженерия - целенаправленное изменение генов в составе молекулы ДНК с целью получения новых белков и пептидов. Когда мы говорим о мутациях, то рассматриваем изменения генов, которые происходят случайно или под влиянием различных факторов, часто весьма нежелательных. Но в хромосомах и генах постоянно происходят нормальные процессы обмена отдельными участками хромосом, отдельными генами, их переме- [c.60]

    Таким образом, можно заключить, что в основе клеточной дифференцировки лежит пе постоянное изменение состава генома клеток, а различное выражение мириад генов, содержащихся в геноме. Это означает, что механизмы эмбрионального развития следует объяснить, исходя из представлений о регуляции работы генов, подобных описанным в гл. XX для прокариотов. С одним примером такого дифференцированного выражения генов в развитии мы уже сталкивались в начале этой главы в случае тысячекратной репликации ДНК ядрышкового организатора в ооцитах амфибий. Следует отметить, что подобный способ регуляции, основанный на факультативной репликации отдельных генов с целью увеличить матричную емкость этих генов в транскрипции, не встречается у прокариотов (и поэтому мы его не обсуждали в гл. XX). [c.513]

    Мутации — естественным образом происходящие внезапные и спонтанные изменения, которые время от времени претерпевают гены,—являются первичным источником новых аллелей и, следовательно, генетической изменчивости. Новые мутации, которые мы наблюдаем сегодня, должно быть, многократно происходили в природе и раньше, так как у нас имеется достаточно оснований считать, что одни и те же мутации генов постоянно возникают вновь. Любое изменение, которое повторно появляется в каждом поколении в течение длительного периода времени, должно постепенно изменять частоты генов в популяции. Влияние таких изменений на частоты генов не зависит от системы скрещивания (хотя к частотам мутантных генотипов это не относится, что будет показано позднее). [c.344]

    Когда происходит изменение, общая энергия остается постоянной, однако она по-разному делится на части. Можно ли направление изменения связать с некоторыми аспектами распреде.гения энергии  [c.139]

    Агрегат состоит из генератора постоянного тока, трехфазного асинхронного электродвигателя, фундаментной плиты и шунтового реостата для регулирования возбуждения генератора. Генератор и электродвигатель. соединяются эластичной муфтой и монтируются на общей плите, образуя один агрегат, именуемый двигатель-генератором. Получение постоянного тока при помощи двигатель-гене-раторов является наиболее надежным способом, допускающим регулирование тока и напряжения в широких пределах, а также реверсирование (изменение направления) тока. [c.83]

    Эти три источника генетической изменчивости и обеспечивают постоянную перетасовку генов, лежащую в основе непрерывной изменчивости. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего адаптированы к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции (гл. 27). Однако эти источники изменчивости не порождают крупных изменений в генотипе, необходимых, согласно эволюционной теории, для возникновения новых видов. Такие изменения происходят в результате мутаций. [c.209]


    Возникновение мутаций — это постоянно действующий фактор. Мутации генов и хромосом дают исходный материал для естественного отбора, и в этом смысле мутации являются фундаментом эволюции Но многие мутации рецессивны, т. е. после появления они как бы скрываются и не обнаруживаются в свойствах последующих поколений. При изменении условий эти мутации могут, однако, проявиться. [c.475]

    В результате постоянного увеличения и уменьшения числа единиц при неравном кроссинговере могло получиться так, что все повторяющиеся единицы данного кластера произошли из относительно небольшого их числа в исходном кластере. Различие спейсеров по длине согласуется с предположением о том, что в неравном кроссинговере участвуют спейсеры, содержащие внутренние неправильно спаривающиеся участки. Это может объяснить постоянство нуклеотидных последовательностей генов по сравнению с их вариабельностью в спейсерах. Гены подвергаются воздействию естественного отбора, когда происходит амплификация отдельных повторяющихся единиц кластера однако спейсеры отбору не подвергаются и могут накапливать изменения. [c.296]

    Недавно было обнаружено, что форма, химические свойства и кристаллическая структура крахмальных зерен определяются многими генами [19], причем на эти признаки влияют также факторы окружающей среды в период развития зерна крахмала. Классическая работа Негели [128] положила начало интенсивному изучению расположения слоев в крахмальных зернах амилопластов. Вначале предполагали, что наличие чередующихся слоев, расположенных в зернах крахмала в радиальном направлении, обусловлено то высоким, то низким содержанием воды. Фрей-Висслинг [65] предположил, что наблюдаемые с помощью микроскопа структурные различия обусловлены изменением показателя преломления, который оказывается более высоким во внутренней части слоя и более низким — в его наружной части, причем имеет место резкое скачкообразное повышение показателя преломления в следующем слое. Слоистое строение крахмальных зерен картофеля, кукурузы и сорго [171], а также эндосперма злаков [34] окончательно доказано исследованиями с применением электронного микроскопа. Вполне очевидно, что содержание воды не единственный фактор, определяющий структурные особенности зерен крахмала, поскольку для исследований в электронном микроскопе использовались высушенные образцы. Бак-хайзен [22] был сторонником предположения, согласно которому образование слоев обусловлено отложением крахмала в разное время суток, причем крахмал, откладывающийся в дневное время, отличается высоким показателем преломления. Он привел данные, показывающие, что при неизменных внешних условиях во время роста у пшеницы формируются крахмальные зерна, лишенные видимой слоистой структуры. Эти данные были подтверждены электронно-микроскопическим исследованием образования зерен крахмала в эндосперме ячменя и пшеницы, произраставших в постоянных условиях [34, 36]. Однако микроскопические и электронно-микроскопические исследования клубней картофеля [36, 148] и РеШота [32] дали совсем иную картину. При выращивании этих растений в тщательно контролируемых условиях освещения и температуры их крахмальные зерна обладали слоистостью, идентичной слоистости нативного крахмала, который образовывался в нормальных полевых условиях то же было установлено [c.143]

    Недавно была предложена модификация гель-электрофореза в агарозном геле, названная электрофорез в пульсирующем электрическом поле или пульс-электрофорез. С ее помощью удается разделять очень большие, можно сказать громадные молекулы ДНК. Обычный гель-электрофорез не позволяет разделить такие молекулы ввиду постоянства электрического поля, которое придает молекулам змеевидную конфигурацию. Обладающие такой конфигурацией молекулы движутся в гелях с постоянной скоростью вне зависимости от длины молекул. Если же направление электрического поля будет часто меняться, скорость движения молекул будет определяться их способностью переориентироваться согласно этому изменению. Такой процесс у больших молекул занимает значительно больше времени, вследствие чего они будут отставать. На гелях после пульс-электрофореза целые хромосомы бактерий или дрожжей выявляются в виде отдельных полос (рис. 4-64, В), и поэтому можно легко определить хромосомные перестройки. Более того, используя гибридизацию молекул клонированной ДНК данного геля для поиска комплементарных последовательностей в геле, удалось картировать множество генов у дрожжей (см. разд. 4.6.8). [c.233]

    Деконденсацию хроматина прн транскрипции можно также наблюдать с помощью светового микроскопа на политенных хромосомах дрозофилы. Такие хромосомы содержатся во многих тканях личинок насекомых. Политенные хромосомы дрозофилы состоят примерно из 1000 нитей ДНК, лежащих рядом друг с другом таким образом, что гомологичные участки соседствуют и образуют поперечные полоски. Политенные хромосомы соответствуют интерфазному хроматину. Каждый функциональный домен в политенной хромосоме представлен Б виде диска, содержащего плотно-упакованную ДНК. Диски разделены менее плотными междисковыми участками. Чередование дисков и междисков образует характерную строго постоянную картину, причем крупные генетические перестройки проявляются в видимых изменениях хромосом. В ходе индивидуального развития личинок картина дисков и междисков несколько меняется. Но особенно ярко изменения транскрипционной активности хроматина политенных хромосом проявляются при индукции генов. Такая индукция достигается, например, при нагревании личинок (так называемый тепловой шок) или при введении гормона насекомых экдизона. При активации транскрипции происходит резкая деконденсация хроматина в определенных дисках и образуются так называемые пуфы. В пуфах можно обна- [c.252]


    Изменение количества ферментов в клетках осуществляется путем индукции или репрессии генов, а также его протеолитической деградации в клетке. Ферменты, которые присутствуют в клетке в относительно постоянном количестве, называются конституитивны-ми. Ферменты, количество которых резко изменяется в зависимости от метаболической ситуации, называются адаптивными, или инду-цибельными. Индуцибельные ферменты и их изоформы чувствительны к протеолизу. [c.375]

    Формула Харди—Вайнберга показывает, что при постоянных условиях в популяции сохраняются первоначальные частоты генов и что любые изменения этих частот возникают лишь под действием внешних факторов. Для того чтобы объяснить наблюдаемое сохранение изменчивости, нет нужды выдвигать какие-либо иные гипотезы, например гипотезу о наследовании приобретенных признаков.. По существу, формула Харди—Вайнберга демонстрирует совместимость менделевской теории наследственности и дарвиновской теории эволюции. Поскольку в большинстве случаев естественный отбор снижает изменчивость в популяции, необходимым условием для непрерывной эволюции остается наличие источника новой изменчивости, даже при корпускулярной природе наследственности. Однако источник этой новой изменчивости может быть значительно скромнее того, который был бы необходим в рамках гипотезы слитной наследственности. [c.80]

    Полная элиминация представляет собой предельный случай действия крайне интенсивного отбора. Если отбор менее интенсивен, изменение будет происходить не так быстро, но процесс в обп ,ем будет носить такой же характер. Иначе говоря, отбор будет очень эффективным, когда частота гена высокая, и очень неэффективным при низкой частоте гена. Кроме того, поскольку запасы вредного аллеля в популяции постоянно пополняются за счет повторных мутаций, рецессивный ген никогда не может быть элиминирован, каким бы интенсивным не было его вредное действие. [c.162]

    Число обнаруживаемых у бактерий белковых и низкомолекулярных факторов, влияющих на эффективность транскрипции различных генов, постоянно увеличивается. Выявлено участие в регуляции активности РНК-полимеразы белковых факторов трансляции, формилметионил-тРНК и гуанозинтетрафосфата, которые обеспечивают сопряжение процессов синтеза РНК и белка, активируя или подавляя выражение определенных генов. Кроме основного сигма-фактора найдены дополнительные сигма-субъединицы, способные переключать транскрипцию с одних групп генов на другие, очевидно, за счет изменения узнающих свойств РНК-полимеразы. [c.23]

    По данным того же автора и Н. А. Киселевой [42], катализатор выполняет свои функции и создает условия, определяющие направление и скорость реакции в течение индукционного периода окисления. Изучая причину изменения цвета окисляемого керосина в присутствии нафтената марганца, переходящего от коричневого к фиолетовому и далее к соломенно-желтому, авторы при помощи электронного микроскопа наблюдали разрушение коллоидных частиц катализатора с образованием кристаллов, максимальное количество которых образуется в момент перехода окраски раствора в соломенно-желтый цвет. Таким образом, квазигетеро-генный катализатор становится явно гетерогенным. Период первичного состояния катализатора соврадает с периодом индукции. Участие катализатора окисления распространяется лишь на короткий промежуток реакции. Поэтому, как указывают авторы, представление о катализаторе в процессе окисления как о системе, постоянно находящейся в зоне реакции окисления, можно считать устаревшим. Катализатор ускоряет лишь образование первичных радикалов, являющихся инициаторами цепного процесса окисления. [c.290]

    Чтобы получить какой-то белковый продукт, необходимо обеспечить правильную транскрипцию кодирующего его гена и трансляцию соответствующей мРНК. Для инициации транскрипции в нужном сайте необходим промотор, а для ее остановки - терминирующий кодон. Клонированный ген часто бывает лишен таких сигнальных последовательностей, и для его экспрессии в прокариотической клетке-хозяине нужно обеспечить и то, и другое. Кроме того, поскольку для решения большинства биотехнологических задач белок должен образовываться в больших количествах, необходимо использовать промотор, который позволял бы получить высокий уровень транскрипции (сильный промотор) и распознавался РНК-полимеразой хозяйской клетки. Постоянная транскрипция клонированного гена истощает энергетические ресурсы хозяйской клетки, поэтому нужно использовать промоторы, работу которых можно регулировать либо с помощью специфических низкомолекулярных соединений, либо изменением температуры. [c.130]

    Примером естественной (природной) геномной инженерии является рекомбинация геномов вирусов гриппа, относяш,ихся к типу А На основании антигенных характеристик рибонуклеопро-теинов выделяют вирусы гриппа А, В и С Изменения антигенных свойств постоянно происходят у вирусов типа А, меньше — у типов В, тогда как вирусы типа С являются антигенно стабильными К тому же известны штаммы вируса гриппа А, изолируемые от свиней, лошадей, уток, цыплят Некоторые изоляты вируса от животных антигенно подобны штаммам, циркулируюш,им среди людей Поэтому более полно изученными к настоящему времени также оказались вирусы типа А Их геном состоит из 8 различных однонитевых сегментов РНК с общей молекулярной массой 2— [c.180]

    Следовательно, при смешении двух жидкостей с одинаковым внутренним давлением теплота растворения равна нулю. Это позволяет предположить, что силовые поля вокруг молекул каждого из компонентов систем в результате смешения не изменяются. Такая схема может быть принята для описания условий взаимодействия между веш,ествами в идеальном растворе. Если разность внутренних давлений двух веществ невелика и значительно ниже Т (произведения газовой постоянной на абсолютную температуру), то они все же смешиваются во всех соотношениях. В этих случаях справедливо выражение подобное растворяет подобное . К системам этого типа относятся неполярные или слабополярные вещества. Когда один или оба компонента полярны, то при смешении происходит изменение сил межмолекулярного взаимодействия. В таких системах имеет место как ассоциация однородных молекул, так и образование комплексов между молекулами растворителя и растворенного вещества. Теплота смешения в этих растворах, как правило, высока и близка по величине к ЯТ. Такие растворы часто устойчивы только при определенной температуре (температуре взаимного смешения, или критической температуре растворения) и становятся ге-геро-генными при охлаждении. [c.9]

    Живые клетки имеют точно запрограммированные механизмы, регулирующие синтез различных белков таким образом, что в любой клетке присутствует определенное количество молекул каждого белка, позволяющее ей осуществлять свои метаболические процессы плавно и с максимальной эффективностью. Мы уже знаем, что ДНК Е. соИ содержит гены для более чем 3000 разных белков. Однако 3000 белков Е. соН присутствуют в клетке не в одинаковых количествах. Реально число копий отдельных белков может быть различным более того, число копий некоторых из них постоянно, тогда как число копий других может варьировать. Одна клетка Е. oli содержит около 15000 рибосом значит, каждый из 50 (или большего числа) рибосомных белков присутствует в клетке в 15 ООО копий. Число копий гликолитических ферментов также, по-видимому, поддерживается в клетке на постоянном и очень высоком уровне. Вместе с тем р-галактозидаза обычно присутствует в клетке Е. соИ в очень малых количествах-всего около пяти молекул. Однако, как мы увидим ниже, число молекул этого фермента может резко увеличиваться в ответ на изменения в доступности определенных питательных веществ в окружающей среде. Благодаря регуляции синтеза ферментов в клетках любого типа создается правильный набор ферментов, обеспечивающий нормальное протекание основных клеточных процессов. Регуляция позволяет также бактериям экономно использовать аминокислоты для синтеза тех белков, которые нужны им лишь [c.953]

    Сейчас получено много данных, подтверждающих, что при бактериальной трансформации ДНК действует как наследственный детерминант, вызывая необратимое изменение наследственных признаков клеток, аналогичное тем изменениям, которые имеют место при мутации. Бойвип [5] рассматривает этот процесс как направленную мутацию. Уже давно было известно, что в выс-1яих растениях и животных ДНК локализована в хромосомах и что в бактериях содержится ядерный материал и генетический аппарат, аналогичный таковым у высших организмов [1]. Поэтому есть все основания думать, что бактериальные трансформации свидетельствуют о том, что ДНК — это активный материал гена, что оп может быть экстрагирован и очищен, сохраняя при этом свою генетическую функцию, и что он может проникнуть в гомо-логршпую клетку и стать постоянной составной частью ее генетического аппарата. [c.305]

    В непродолжительных экспериментах с чистой культурой генетический материал ограничен и постоянен, и только ее фенотипичное выражение подвержено колебаниям в зависимости от изменений окружающих условий. В природных сообществах при условии постоянного заражения всеми видами микроорганизмов имеется не только фенотипичное колебание, но также и выбор генетического материала, представленный почти полным набором микробных генов. По сравнению с чистой культурой в смешанной культуре исчезает, таким образом, один пз характерных для системы параметров — постоянство генетического материала. В то же время появляется новое обязательное условие ни одна экологическая ниша не должна остаться незаполненной. [c.301]

    Редко, однако, бывает, чтобы мутантный ген немедленно по возникновении обладал благоприятным эффектом. В боль шинстве случаев потенциальные возможности мутантной фор мы выявляются лишь в результате рекомбинации. У пере крестнооплодотворяющихся организмов постоянная перегруп пировка генов вызывает генотипические различия между всеми особями, кроме монозиготных двоен. Наряду с этим происходит генотипическая адаптация к условиям внешней среды, в процессе которой неподходящие комбинации генов элиминируются, а лучшие становятся преобладающими. Когда происходит новая мутация, то новый аллель комбинируется с другими генами, составляющими ту генотипическую среду, в которой появился мутантный аллель. Благодаря естественному отбору (или искусственному отбору у культурных растений и домашних животных) постепенно генотипической средой мутантного гена станет та, в которой он обеспечит наилучшую жизнеспособность и плодовитость либо другие благоприятные признаки. Таким образом, мутантный ген, первоначально обладавший бесспорно вредным эффектом, имеет известные возможности стать безвредным или даже полезным для организма в результате изменения генотипической среды. [c.202]

    Иногда изменение, вызванное ионизацией, оказывается постоянным, стойким, и ген будет далее воспроизводиться в измененной форме. Это, очевидно, случается при генных мутациях, когда химическое изменение в гене распознается по обнаружнмому изменению в его поведении . Нужно учитывать, что нельзя быть уверенными в обнаружении каждого стойкого изменения гена на основании изменения поведения гена. Например, в случае аллеломорфов гена белых глаз у дрозофилы имеется большое количество разных состояний этого гена, отличимых друг от друга потому, что цвет глаз представляет собой признак, при изменении которого поддаются обнаружению мелкие количественные различия. Разные аллеломорфы это) о гена влияют также и на цвет мальпигиевых трубок личинки, однако, если бы мы полагались только на цвет мальпигиевых трубок, мы могли бы различить меньшее число аллеломорфов и потому в опытах облучения часто не заметили бы мутации, которая в действительности произошла. Даже используя в качестве средства обнаружения мутаций более чувствительный признак — цвет глаз, нельзя обнаружить всех изменений гена, так как известно существование аллеломорфов, сходных в отношении окраски глаз, но различающихся по другим свойствам (например, жизнеспособности и плодовитости Тимофеев-Рессовский, 1938Ь). Поэтому очевидно, что устанавливаемая экспериментально частота мутаций данного локуса обычно ниже действительной частоты возникновения в ней стойких жизнеспособных изменений . Это соображение, вероятно, следует особенно иметь в виду при обсуждении описанных выше в этой главе экспериментов по вызыванию мутаций растительных вирусов. [c.138]

    Ген 1ас1 продуцирует репрессор, который не может связываться с индуктором, например из-за потери сайта связывания с ним. В результате репрессор остается постоянно связанным с оператором независимо от присутствия индуктора. Такой ген является шраис-доминантным, так как введение гена lad не приводит к изменению эффекта ие-индуцибельный репрессор остается связанным с оператором. [c.182]

    Подобные расчеты можно проделать и в отношении других псевдогенов. Некоторые из них, по-видимому, также до того, как стали псевдогенами, активно функционировали. Другие, вероятно, были неактивными с момента своего возникновения. Общий вывод, который можно сделать, исходя из структуры таких псевдогенов,-это независимый характер эволюционирования каждого из них в процессе эволюции кластера глобиновых генов каждого вида организмов. Сказанное подтверждает предположение о том, что возникновение новых генов, за которым следует их закрепление в геноме в качестве функциональных копий, их изменение, приводящее к образованию новых функционально активных генов, или инактивация с образованием псевдогенов-процессы, происходящие в кластере постоянно. [c.278]

    Большое внимание уделялось тому, каким образом состояние метилирования может передаваться в ряду клеточных поколений или быть изменено. В ДНК половых клеток, например сперматозоидов, каждый ген находится в неактивном состоянии, т. е. метилированы и постоянные сайты (модифицированные во всех тканях), и вариабельные сайты, т.е. те, которые специфически не метилированы в тканях с экспрессируемыми генами. Таким образом, отсутствие определенных метильных групп в активном состоянии представляет собой потерю ранее существовавших модификаций. Мы не знаем, сохраняют ли клеточные гены метильные группы после того, как они перестают экспрессироваться. Критический вопрос, на который хотелось бы получить ответ, заключается в следующем какие последовательности выбираются в качестве мишени для тканеспецифических изменений в состоянии метилирования  [c.387]

    До недавнего времени было принято считать, что геномы про- и эукариот статичны, что последовательности, образующие их, подвергаются только медленным эволюционным изменениям. Мы привыкли к мысли, что генетическая карта отражает порядок расположения известных генов подразумевается, что неидентифицированные последовательности также сохраняют постоянное место в геноме. На стабильность генетической организации указывает наличие родственных последовательностей у представителей дивергировавщих видов, например у человека и обезьяны. Различие во времени генераций про-ТГэукариот свидетельствует о том, что они эволюционируют с разной скоростью, но даже у прокариот организация генома меняется относительно медленно. Например, очень сходные генетические карты имеют разные бактериальные виды Е. соН и S. typhimurium. Эволюция генов происходит как в результате приобретения новых последовательностей, так и в результате перераспределения уже имеющихся. Новые последовательности могут быть введены с помощью векторов или появляться при мутировании существующих генов. Возникновение новых последовательностей возможно также в результате перестроек генетического материала. Такие перестройки могут изменить и функции имеющихся генов путем создания для них новых условий регуляции. [c.458]

    Молекулярные часы, основанные на теории нейтральности,-это, конечно, не те часы с точным механизмом, с помощью которых мы измеряем время в нашей повседневной жизни. Напротив, теория нейтральности предсказывает, что ход этих часов носит стохастический характер, сопоставимый с радиоактивным распадом. Постоянна лишь вероятность изменений в единицу времени, но и она подвержена некоторой изменчивости. Тем не менее при измерении достаточно продолжительных промежутков времени стохастические часы оказываются весьма точными. Более того, каждый ген или белок представляет собой отдельные часы, которые позволяют оценивать последовательность филогенетических событий и время, когда они происходили, независимо от других часов. Каждый ген или белок-это часы с маятником , качаюпщмся со своей собственной, отличной от других скоростью (для генов эта скорость задается темпом мутирования нейтральных аллелей, а для бел-ков-см. рис. 26.11) однако все часы отсчитывают время одних и тех же эволюционных событий. Сравнивая результаты, полученные по нескольким генам или белкам, мы можем сконструировать вполне точные эволюционные часы. [c.235]

    Экспрессия генов группы gap и pair-rule носит временный характер, но она накладывает отпечаток на экспрессию генов полярности сегментов и гомеозисных селекторных генов экспрессия этих последних генов сохраняется, подвергаясь некоторым уточнениям в процессе дальнейшего развития и обеспечивает клетки позиционной информацией. Механизм клеточной памяти частично обеспечивается положительной обратной связью (предполагающей, что белковые продукты гомеозисных селекторных генов стимулируют транскрипцию собственных генов) и частично наследуемыми изменениями структуры хроматина. Необходимость некоторых форм запоминания позиционных значений можно продемонстрировать в экспериментах на клетках имагинальных дисков, из которых возникают наружные структуры тела взрослого организма, эти клетки сохраняют память о своих исходных назначениях в течение неопределенного числа клеточных делений. Такое поведение определяется постоянным присутствием гомеозисных селекторных генов в каждой отдельной клетке любого имагинального диска. Границы компартментов. которые, по всей вероятности, поддерживаются благодаря избирательному сшшшию отдельных клеток, делят клетки, характеризуемые различным состоянием дифференцировки, согласно экспрессии этих генов. [c.134]

    ДНК-содержащие вирусы - весьма разнообразная группа, но описанные общие принципы, с некоторыми изменениями (вариациями), применимы к большинству из них, вовлеченных в патогенез рака. Примером одного из вариантов являются папилломавирусы, для которых постоянная связь с клеткой организма-хозяина - неотъемлемая часть их жизненного цикла. Вирусы папилломы, как и вирус 8У40, относятся к семейству паповавирусов, но они. по-видимому, могут переключаться с инфекции непродуктивного типа (лизогенизации) к инфекции продуктивного (литического) типа, и наоборот. В первом случае вирус реплицируется синхронно с клеткой, не принося ей вреда, во втором случае он быстро размножается и убивает (лизирует) клетку, высвобождая массу новых вирусных частиц, способных инфицировать другие клетки. Подобно 8У40, эти вирусы способны подчинять себе клеточную систему синтеза ДНК, а осуществляющие эту функцию вирусные гены могут действовать как онкогены. На рис. 21-20 показано, как, вероятнее всего, вирусы папилломы участвуют в канцерогенезе шейки матки у человека. [c.468]


Смотреть страницы где упоминается термин Геном постоянные изменения: [c.137]    [c.213]    [c.486]    [c.147]    [c.245]    [c.154]    [c.60]    [c.216]    [c.165]    [c.74]    [c.437]    [c.96]    [c.318]    [c.245]    [c.247]    [c.508]    [c.82]    [c.326]   
Биохимия Том 3 (1980) -- [ c.111 , c.363 , c.364 ]




ПОИСК







© 2025 chem21.info Реклама на сайте