Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидные пары

    Организм Масса в Дальтонах Число нуклеотидных пар [c.28]

    В результате исследования клонированных генов эукариот удалось показать, что избыточность содержания ДНК, по крайней. мере частично, объясняется наличием внутренних некодирующих районов гена (интронов), суммарная длина которых может значительно (в несколько раз) превышать длину частей гена, кодирующих полипептид. Районы, представляющие собой регуляторные участки гена, включают небольшую часть ДНК, обычно не превышающую нескольких сотен нуклеотидных пар. [c.186]


    Существенную часть генома эукариот (10—20 %) составляют повторяющиеся последовательности ДНК (см. гл. X), которые в основном представлены разными типами подвижных (мобильных) элементов. Критерием для отнесения фрагментов генома к числу подвижных часто служит лишь локализация по их флангам коротких прямых повторов, обычно включающих несколько нуклеотидных пар ДНК, что отражает молекулярные механизмы акта их внедрения в ДНК-мишень (см. гл. IV). Функциональная роль Подвижных элементов не ясна, но, во всяком случае, они в значи тельной степени определяют, как и у прокариот, изменчивость генома и, следовательно, могут играть большую роль в эволюции генома. Роль мобильных элементов в мутационном процессе, включая образование делеций н инверсий, уже была рассмотрена на примере прокариот (см. гл. VI). [c.221]

    Сначала — о выборе самих матриц. Присоединять к матрице очень крупные молекулы НК неудобно, да и нет необходимости, так что их предварительно тем или иным способом дробят на фрагменты длиной 200—700 нуклеотидов или нуклеотидных пар (70—250 тыс. [c.387]

    Нуклеотидная последовательность в операторном участке была установлена [43] путем расщепления ДНК дезоксирибонуклеазой в присутствии репрессорного белка. Будучи связанным, репрессор защищает участок, состоящий из 27 нуклеотидных пар (показано на рисунке). Поразителен тот факт, что центральная часть оператора располагается в участке с вращательной симметрией второго порядка (гл. 2, разд. Г, 11). В результате цепь ДНК оказывается способной образовывать петли, благодаря которым структура ДНК приобретает крестообразную форму (рис. 2-30 и 15-4) [44]. Есть все основания думать, что такая структура может легче связываться с тетрамерным репрессор-ным белком, чем линейная форма. [c.204]

    Большие плоские химические структуры типа нуклеотидных пар в ДНК можно вырезать из пенопластовых пластин. [c.376]

    Все генетические приказы , отдаваемые клетке, исходят от ДНК-Молекулы как ДНК, так и белков построены в виде цепочек, состоящих в первом случае из нуклеотидов, а во втором —из аминокислот. Молекулы ДНК, как правило, двухцепочечные, т. е. состоят из двух образующих двойную спираль полинуклеотидных цепочек комплементарные основания противоположных цепочек образуют нуклеотидные пары (рис. 2-21). В настоящее время твердо установлено, что большая часть генетических сообщений в ДНК представляет собой последовательность кодовых слов , или кодонов. Каждый кодон состоит из трех нуклеотидов (или трех нуклеотидных пар, если ДНК двухцепочечная) и соответствует одной из 20 аминокислот, из которых построены белки. Последовательность кодонов в ДНК определяет, в каком порядке должнь соединяться аминокислоты при синтезе каждого из многочисленных белков. [c.18]


Рис. 19. Линейная (u) и крестообразная (б) структуры участка плазмиды pBR322, содержащего обращенную повторяющуюся последовательность нуклеотидных пар, под-черкнутую на рисунке Рис. 19. Линейная (u) и крестообразная (б) структуры участка плазмиды pBR322, содержащего обращенную повторяющуюся <a href="/info/198474">последовательность нуклеотидных</a> пар, под-черкнутую на рисунке
    Допустим, что средняя белковая молекула — это свернутая це почка, состоящая из 300 аминокислот. Стало быть, участок молекулы ДНК (один ген), кодирующий синтез этого белка, должен включать около 900 пар нуклеотидов. Добавив сюда еще некоторое количество, нуклеотидов для образования промежутков между генами, мы получим что число нуклеотидных пар, составляющих 1 ген, в среднем равно 1000. [c.18]

    В приведенной ниже таблице охарактеризованы некоторые известные нам типы вирусов и ряд отдельных вирусов. Форма вирусных частиц обозначена буквами И (икосаэдр) С (спираль) и Сл (более сложная). Для некоторых спиральных вирусов и вирусов с более сложным строением приведена длина частиц в нм. Указана также длина молекулы нуклеиновой кислоты в тысячах оснований (для одноцепочечных ДНК или РНК) или в тысячах нуклеотидных пар (для двухцепочечных нуклеиновых кислот). Число генов, содержащихся в вирусной частице, иногда несколько превышает это число. [c.286]

    В живых организмах содержатся два вида НК ДНК и РНК. Вирусы содержат либо ДНК, либо РНК. Все НК - высокомолекулярные соединения, биополимеры с молекулярной массой от 20 10 до Ю " Да, а иногда и больше. Молекулы ДНК имеют длину от 10 нм до 10-50 мм, число нуклеотидных пар - от 5000 до 5 млн и массу до 2 10" Да (1 Да = 1,67 10 - г). [c.43]

    В последние годы параметры В-, А- и Z-форм двойных спиралей ДНК удалось уточнить высокоразрешающим рентгеноструктурным анализом монокристаллов самокомплементарных синтетических олигонуклеотидов, образующих короткие двойные спирали (дуплексы). При этом можно оценить конформацию каждой нуклеотидной пары в дуплексе. Оказалось, что внутри двойной спирали сушествует конформационная микрогетерогенность в зависимости от последовательности нуклеотидных пар конформации сахаров в нуклеотидных остатках несколько отличаются. 2 го приводит к отличиям в межнуклеотидных расстояниях вдоль оси спирали и к различному наклону пар оснований к этой оси. Такие зависящие от первичной структуры различия во вторичной структуре ДНК, по-видимо.му, чрезвычайно важны для ее функционирования. [c.29]

    Внутрицепочечные двуспиральные участки являются относительно короткими. Длина непрерывных спиралей редко превышает размер одного полного витка, т. е. 10—12 пар нуклеотидов, а средняя длина составляет около 7—8 нуклеотидных пар. Всего в 16S РНК Е. соИ, согласно приведенной схеме вторичной структуры (рис. 42), можно насчитать около 60 спиралей (обозначены номерами в квадратиках), т. е. в среднем одна спираль на 25—30 нуклеотидных остатков. [c.76]

    В прокариотических 238 РНК домен I образован 5 -концевой последовательностью приблизительно из 500 нуклеотидных остатков. В эукариотических 288 РНК домен I образуется при взаимодействии с 5,88 РНК, представляющей собой, как уже отмечалось выше, гомолог 160-нуклеотидной 5 -концевой последовательности прокариотических 238 РНК. В последнем случае З -концевая последовательность 5,88 РНК прочно спаривается на большом протяжении (15— 17 нуклеотидных пар) с 5 -концевой последовательностью 288 РНК, [c.88]

    Уже отмечалось выше (раздел 3 этой главы), что в 23S РНК бактерий самый 5 -конец цепи спарен с ее З -концом (совершенная стабильная спираль из 8 нуклеотидных пар). Соответственно, в рибосомах хлоропластов высших растений 5 -конец 23S РНК спарен в такую же спираль с З -концом 4,5S РНК. В рибосомах эукариотических организмов З -конец высокомолекулярной 28S РНК, по-видимому, спарен с самым 5 -концом 5,8S РНК. [c.89]

    Уже на раннем этапе изучения пространственной структуры ДНК выяснилось, что при изменении внешних условий двойная спираль может принимать формы, отличные от уотсон-криковской (В-фор-мы). Так, при понижении влажности (в препарате образца для рентгеноструктурного анализа) или активности воды в растворе (при добавлении спирта, например) ДНК переходит в так называемую А-форму (рис. 14). Этот переход связан в первую очередь с изменением конформации углеводного остатка. Если в В-форме ДНК остаток дезоксирибозы находится в С2 -дайо-конформации, то при переходе в А-форму он принимает СЗ -зк<Зо-конформацию. Как было показано на рис. И, это приводит к уменьшению расстояния между фосфатными группами и, следовательно, к уменьшению расстояний между нуклеотидными парами вдоль оси спирали (до примерно 0,25 нм при И нуклеотидных остатках на виток спирали).. Диаметр спирали увеличивается, изменяется ширина и глубина бороздок, пары оснований образуют с осью спирали угол около 20 и, главное, смещены к пери(]жрии спирали. Вследствие этого спи- [c.26]

    Есть ли необходимость в создании новых генов Оказывается, да. Мутации происходят часто, но сохраняются очень немногие, и далеко не все они благоприятны. А управляемый мутагенез позволяет обойти эти трудности как по существу мутации, так и по времени ее появления. Еще одним важным достижением биоорганической химии и генной инженерии является химический синтез олигонуклеотидов, практически генов. Первый ген из 150 нуклеотидных пар синтезировал в 1967 г. X. Г. Корана и его сотрудники. Это был гея одной из тРНК. Х.Г. Корана первым осуществил так называемый блочный синтез, когда одна половина блока [c.61]


    Протяженность первичных ядерных транскриптов, образуемых РНК-полимеразой И, сильно варьирует, но может достигать десятков тысяч нуклеотидных пар, т. е. соответствует размерам ряда эукариотических генов (см. гл. IX). При исследовании клеточного ядра специальными методами электронной микроскопии удается обнаружить транскрипционные комплексы (рнс. 101). Продвижение РНК-полимеразы по ДНК сопровождается образованием транскриптов, которые, взаимодействуя с белками, упаковываются в рибонук-леопротеидные комплексы. [c.172]

    НО исследовать кинетику реассоциации однонитевых денатурирован-ных фрагментов ДНК, определяя в каждый данный момент реакции количество ренатурировавшей двуспиральной ДНК- Кинетические параметры реакции количественно характеризуют степень разнообразия последовательностей ДНК, или сложность ДНК (рис. 107, а). Скорость реассоциации ДНК пропорциональна at(v=K t), где Со — молярная концентрация нуклеотидов ДНК t — вре.мя, с. Значение oiVj, когда реассоциирует 50 % ДНК. характеризует степень сложности генома.Оказывается, что значение l U для ДНК Е. соИ < 9) примерно в 30 раз больше, чем для ДНК фага Т4 (3-10- ). Действительно, содержание ДНК в клетках . сой (5-10 п-н.) также в 30 раз больше, чем в составе частицы фага (1,7-10" п. н.). Сложность ДНК определяется общей длиной (в нуклеотидных парах) разных последовательностей ДНК. содержащихся в исследуемом образце ДНК. С увеличением степени полиплоидиза-ции сложность геномной ДНК, как и кинетика реассоциации, меняться не будет. [c.187]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Гены, контролирующие развитие дрозофилы, могут быть достаточно протяженными и включать многие десятки тысяч нуклеотидных пар ДНК Например, длина первичного транскрипта локуса ВХ очень велика, она достигает 70 т. п. н. В состав ряда таких генов входят необычно длинные интроны. Возможно, альтернативные пути сплайсинга (процессинга) длинных первичных транскриптов локуса ВХ приводят к образованию целого набора мРНК, которые транслируются в разных группах клеток с образованием белков, несущих разные функции. Однако детали строения этих генов и особенности регуляции их активности еще мало исследованы. [c.217]

    Денатурацию чаш е всего осуществляют кратковременным нагреванием раствора ДНК в 0,12 М Ка-фосфатном буфере до 97°, ренатурацию — охлаждением до так называемой критической температуры , которая на 20—25° ниже температуры плавления данной ДНК. Эту операцию, по аналогии с технологией обработки стали, называют отжигом . В отсутствие денатурирующих добавок температура отжига обычно близка к 60° в случае высокого содержания в ДНК ГЦ-пар она может быть заметно выше. Степень ренатурации пропорциональна произведению исходной концентрации раствора ДНК и времени отжига, которое обозначают символом ozf. Перед денатурацией ДНК необходимо тем или иным способом раздробить на фрагменты длиной 400—500 нуклеотидных пар. Без такого дробления не только сильно замедлится процесс ренатурации, но и благодаря наличию разбросанных по длине ДНК одинаковых (повторяющихся) последовательностей нуклеотидов может образоваться пространственная сетка молекул ДНК. [c.241]

    Г. человека сосгоит из 23 хромосом и содержит примерно 3 10 нуклеотидных пар. Г. бактерий представлен единств, кольцеюй хромосомой, связанной с клеточной мембраной. Строение ее намного проще, чем у высших организмов. Так, ДНК генома ишечной палочки состоит из 3,8-10 нуклеотидных пар. Г. наиб, примитивных вирусов состоит из молекулы ДНК или (в нек-рых случаях) РНК, имеющих линейную или кольцевую форму. У более сложных вирусов обнаруживаются черты структурной организации, характерные для хромосом высших организмов. [c.519]

    Изменение расположения генов в хромосомах (т.наз. хромосомные М.) происходит в результате дупликации (повторения) гена, инверсии (переворота одного или неск. генов на 180°), транслокации, илн транспозиции (переносе участка хромосомы, соизмеримого по длине с геном, в новое положение в той же или в даугой хромосоме), а также делеций-выпадения участка генетич. материала (от неск, нуклеотидных пар до фрагментов, содержащих неск. генов частный случай дефишенси-нехватка генов на конце хромо сомы). При траислокации ряда генов наблюдается т. наэ эффект положения ген а-изменение проявления ак тивности гена при перемещении его в др. участок хромосомы. Этим объясняется, напр., появление полосковидных глаз у дрозофилы. [c.154]

    Прежде всего, в 5S РНК 5 -концевой участок цепи комплементарен З -концевому участку и образует с ним прочную длинную двойную Спираль из 9—11 пар нуклеотидов (спираль I). Вся внутренняя нуклеотидная последовательность укладывается в две составные шпильки. Одна составная шпилька четко разделяется на два двуспиральных участка — собственно шпильку из 6 пар нуклеотидов с большой торцевой петлей из 11—13 остатков в районе 40-го нуклеотида (спираль Ш) и двуспиральный участок из 7—8 нуклеотидных пар (спираль 11), соединенный с предыдущей спиралью некомплементарным районом. Другая составная Шпилька с маленькой торцевой петлей из 2- нуклеотидных остатков представляет собой почти непрерывную двойную спираль, но, как правило, содержащую несколько дефектов, таких как неканонические пары, выпетливающиеся нуклеотидные остатки и, часто, неспаренные нуклеотиды в середине поэтому она обычно может быть разбита на две подспирали (спираль IV и спираль V). [c.83]

    Молекула как 16S РНК прокариот, так и 1SS РНК эукариот может быть подразделена на 3 главных домена 5 -концевой (домен I), ограниченный и скрепленный черешковой спиралью из 10—11 нуклеотидных пар (спираль 2, обркзованная последовательностями 27— 37 и 547—556 в случае 16S РНК Е. соП, см. рис. 42) серединный (домен II), имеюший черешок из 7 нуклеотидных пар (спираль 22, образованная последовательностями 564—570 и 880— 886 у Е. соИ) 3 -проксимальный (домен III), ограничен- [c.85]


Смотреть страницы где упоминается термин Нуклеотидные пары: [c.41]    [c.188]    [c.210]    [c.219]    [c.221]    [c.224]    [c.227]    [c.218]    [c.280]    [c.482]    [c.79]    [c.18]    [c.54]    [c.35]    [c.86]    [c.41]   
Биохимия Том 3 (1980) -- [ c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте