Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентированные полимеры типы структур

    Каучуки, полученные при более высокой температуре полимеризации, обладают значительно более низкой прочностью по сравнению с полимером этого типа, полученным при низких температурах. Для разветвленных каучуков иногда не обнаруживают заметной зависимости Ор от молекулярной массы в области значений молекулярной массы от 90 тыс. до 500 тыс. [477, с. 395]. При данном содержании поперечных связей чем более разветвлен полимер, тем больше обнаруживается дефектов структуры, обусловленных наличием значительного числа свободных концов молекулярных цепей, не ориентирующихся при растяжении. С увеличением степени полимеризации длина основной цепи макромолекул разветвленных полимеров растет сравнительно медленно, и повышение прочности вследствие большей способности длинных цепей к ориентации может не компенсировать ослабления сетки вулканизатов, обусловленного возникно-вением новых дефектов в ее структуре. [c.175]


    Упомянутые структуры разрушаются после высушивания, необходимого для проведения электронно-микроскопических исследований, и становятся плоскими. Модель структуры тонкого пластинчатого кристалла показана на рис. 111.12. Несмотря на то, что морфологически кристаллы полиэтилена неотличимы от монокристаллов парафинов, однако в силу того, что длина макромолекул полимера может достигать нескольких десятков тысяч ангстрем, причем оси макромолекул ориентированы нормально к поверхности пластинчатых кристаллов, можно сделать вывод о том, что в плоских поверхностях последних должно происходить складывание цепей (см. рис. 111.12). Если отделить какой-либо участок от монокристалла, находящегося в поле зрения электронного микроскопа, и исследовать его методом дифракции электронов, то нолучается четкая картина дифракции типа той, которая показана на рис. 111.13. [c.170]

    Если процесс полимеризации несимметричного мономера типа СН2 = СНН протекает по типу присоединения голова к хвосту , т. е. в цепи регулярно чередуются группы СН2 и группы СНК, то возможны только два способа пространственного расположения звеньев. Управление актом роста цепи состоит, следовательно, в том, чтобы обеспечить присоединение очередного звена либо строго с той же конфигурацией асимметрического атома, что и в предыдущем звене (изотактическая цепь), либо строго с противоположной конфигурацией (синдиотактическая цепь). Фактически дело сводится к управлению строением переходного комплекса в момент роста цепи. Подобное управление может быть осуществлено с помощью специальных катализаторов гетерогенного или гомогенного типа (Циглер, Натта), влияющих на геометрию переходного комплекса, с помощью активных растворителей, принимающих участие в построении этого комплекса, а также с использование.ч любых воздействий, способствующих ориентации мономерных молекул непосредственно перед их вступлением в реакцию полимеризации. Из таких воздействий можно использовать ориентирующее поле кристаллической решетки мономеров при их полимеризации в твердой фазе или поле посторонних веществ и комплексообразующих добавок, создающих требуемые геометрически правильные структуры. Наконец, поскольку свободная энергия присоединения звена с той же конфигурацией асимметрического атома, что и в предыдущем звене, больше ово-бодной энергии присоединения эвена с противоположной конфигурацией, проводя радикальную полимеризацию при температурах, например, от —50 до —70° С, можно в некоторых случаях получить почти чистый синдиотактический полимер. [c.424]


    Рассмотрим сначала наиболее простой случай развития межфазной прочности водных растворов глобулярных белков на границе с воздухом. Известно, что в водных растворах молекулы яичного альбумина, сывороточного альбумина и казеина находятся в виде глобул и большинство неполярных групп создают гидрофобные области внутри глобулы. При адсорбции белка на поверхности в результате избытка свободной энергии на границе раздела фаз происходят конформационные изменения адсорбированных молекул, так как нарушается равновесие сил, стабилизи-руюш их глобулу. Ранее на возможность развертывания глобул белков на границе раздела фаз указывалось в работах Александера [42, 43, 126], Пче.чипа [151], Деборина [152]. Развертывание макромолекул на границе раздела фаз сопровождается глубокими изменениями в третичной структуре, вследствие чего большинство гидрофобных групп ориентировано к воздуху. Агрегация денатурированных макромолекул и обусловливает нарастание прочности межфазного адсорбционного слоя. Возникаюш,ий при агрегации макромолекул тип структуры, образованный множеством межмолекулярных гидрофобных связей, напоминает -структуру параллельного типа. Фришем, Симхой и Эйрихом [153—155] для разбавленных растворов полимеров была разработана модель структуры адсорбционного слоя, по которой гидрофобные участки макромолекул обращены в газовую фазу, тогда как остальная часть адсорбированной макромолекулы образует как бы свободные петли и складки. Эта модель также не исключает возможности образования межмолекулярных связей, приводящих к возникновению межфазных прочных структур. [c.214]

    Поверхностные реплики тонких пленок, закристаллизованных из расплава или поверхности скола толстых образцов, обнаруживают ламеллярные структуры (см. рис. 9). Хотя подобные типы структур наблюдались для множества полимеров [16, 22, 28—30], явно недостаточно принимались во внимание условия кристаллизации и возможные различия молекулярных весов образцов, без чего нельзя отождествлять эти наблюдения и искать для них корреляции с данными малоуглового рентгеновского рассеяния. Обычно ламелли имеют т )лщину порядка 100—150 А, причем оси цепей ориентированы нормально к широкой грани, что возможно только при многократном прохождении одной и той же цепи через кристаллит. Эти размеры в основном и обусловливают большие периоды, наблюдаемые при малоугловом рассеянии рентгеновских лучей на образцах, закристаллизованных при очень сильном переохлаждении. Результаты исследования идентичных образцов обоими методами совпадают, если периоды и размеры лежат в области 100—200 А. [c.288]

    Вследствие большей подвижности структурных элементов и ориентирующего влияния подложки в поверхностных слоях, граничащих с окружающей средой (с воздухом), возникают сложные надмолекулярные образования различной формы, размера и строения в зависимости от типа пленкообразующего и химического состава полимера. Эти структуры ориентируются в плоскости подложки с формированием сетки, сферолитоподобных образований и структур с ядром в центре и ориентированными относительно его сферами из структурных элементов различного размера, морфологии и степени упорядочения. Эти сложные образования в пограничном слое являются различного рода структурными дефектами. Они ухудшают декоративные, защитные и физико-механические свойства покрытий. Сложные структурные образования являются типичными для покрытий, формирующихся в виде тонких слоев на поверхности твердых тел, и не обнаруживаются при отверждении в тех же условиях блочных материалов, хотя структура последних также неоднородна по толщине. Вероятность формирования, число и размер сложных надмолекулярных образований в поверхностных слоях покрытий тем больше, чем шире молекулярно-массовое рас-лределение в системе, что свидетельствует о том, что центрами структурообразования в этом случае являются надмолекулярные структуры более высокомолекулярных фракций. [c.250]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Иногда в поликристаллическом образце кристаллиты расположены не беспорядочно, а ориентированы по определенным НН правлениям В этом случае говорят, что образец обладает текстурой Для полимеров наибольший интерес представляет С1учай, когда одна и та же ось у всех кристаллитов ориентирована по определенному направлению, а повороты вокруг этой оси произвольны. Такой тип ориентации называется аксиальной текстурой Совокупность ориентаций кристаллитов в случае аксиальнои текст ры б>дет такой же, как и при вращении монокристалла вокруг оси Поэтому рентгенограмма аксиальной текстуры (рис 26) аналогична рентгенограмме вращения (см рис 23) На рентгенограмме аксиальной Структуры, так же как и на рентгенограмме вращения, рефлексы располагаются по слоевым линиям Различие между тексту рренг гепограммой и рентгенограммой вра- [c.101]


    Полимеры первого типа рассматривают как двухфазные системы (аморфно-кристаллические полимеры). Различают фибриллярные (волокнистые) полимеры и полимеры, не имеющие волокнистого строения. Типичный представитель фибриллярных аморфно-кристаллических полимеров - целлюлоза, которая образует природные растительные волокна. В фибриллах все оси кристаллитов ориентированы в одном направлении. Структуру таких полимеров, в том числе целлюлозы, описывают моделью бахромчатой фибриллы (рис. 5.7 также см. 9.4.2 и рис. 9.3). Фибриллы состоят из чередующихся кристаллических участков (кристаллитов) и аморфных участков. Резкой фазовой границы, и тем более поверхности раздела, между участками нет, т.е. фазы следует рассматривать в структурном понимании. В синтетических аморфно-кристаллических блочных полимерах оси кристаллитов не имеют одного направления, и крисгаллиты как бы вкраплены в аморфную фазу. С современных позиций структура аморфно-кристаллических полимеров хорошо укладывается в рамки кластерной теории. Кристаллиты - это кластеры с максима. ьной степенью упорядоченности, т.е. имеющие кристаллическую решетку, соединенные проходными макромолекулами, образующими аморфные участки. [c.139]

    Вопросы эпитаксии также имеют непосредственное отношение к затронутой проблеме. Эпитаксия — ориентированное нарастание слоев — известна давно. В частности, этим вопросом еще в XIX веке занимался Франкенгейм. Обширная библиография по эпитаксии приведена в работах [40, 346—348]. Свойства эпитаксиальных слоев различных материалов, главным образом полупроводников, интенсивно исследуются. Обнаружена зависимость от типа подложки не только структуры, но и прочностных, электрических и магнитных характеристик вакуумных конденсатов различных полупроводниковых материалов [346—348]. Впервые эпитаксиальный рост полимерных кристаллов на поверхности твердого тела описан в работах [349, 350], затем этот эффект был подробно изучен [245—249, 340, 351—359]. В частности, было обнаружено, что аминокислоты и олигопептиды образуют ориентированные наросты на минералах [345]. Свежеобразованные сколы галогенидов металлов (Na l, K I, KI, LiF), а также кварц оказывают ориентирующее влияние на расположение кристаллов полиметиленоксида, полипропиленоксида, полиэтилена, полиэти-лентерефталата, полиакрилонитрила, полиуретана, полиамидов. Эпитаксиальные явления в подобных системах могут быть следствием [354] ориентирующего влияния ионов подложки, расположенных в определенной последовательности. Кроме того, дислокации, образующиеся при расщеплении галогенидов металлов, также могут оказывать влияние на зародышеобразование, так как они имеют определенную ориентацию и сообщают поверхности повышенную энергию. В работе [359] указывается на эффект своеобразного фракционирования полимеров, заключающийся в том, что при определенных условиях склонность к эпитаксиальной кристаллизации обнаруживают самые большие макромолекулы [359]. [c.140]

    Закристаллизованные области в полимерном теле обычно оптически анизотропны. Эта анизотропия вызвана анизотропным ориентационным и координационным порядком в расположении цепных молекул в кристаллич. решетке полимера. Картина возникающего при этом Д. л. зависит от характера надмолекулярных структур, образовавшихся в закристаллизованном полимере. В фибриллярных структурах наблюдается осевой ориентационный молекулярный порядок и соответственно оптич. анизотропия, ось к-рой направлена вдоль по фибрилле (волокну). При этом знак Д. л. определяется знаком анизотропии цепных молекул, а значение Д. л. может служить мерой средней степепи их ориентации в волокне (фибрилле). Широко распространенным типом кристаллич. форм, обнаруживаемых в микроскоп по их Д. л., являются сферолиты. При наблюдении сферолита, полученного кристаллизацией полимера в тонком слое, в параллельных лучах и скрещенных поляроидах виден темный крест, центр к-рого совпадает с центром сферолита, а оси параллельны плоскостям поляризатора и анализатора. Малое значение Д. л. у сферолитов означает, что степень упорядоченности субмикроскопич. монокристаллов в них невелика. Если известен знак оптич. анизотропии молекул полимера, то по знаку Д. л. сферолита можно судить о направлении в нем молекулярных цепей. Так, отрицательное Д. л. сферолитов полиэтилена соответствует тому, что его положительно анизотропные молекулы ориентированы в сферолите в тангенциальных направлениях (вдоль оси с кристалла). [c.332]

    Управление структурой этого переходного комплекса может быть осуществлено с помощью особых катализаторов гетерогенного или гомогенного типа (например, алюминийорганических соединений с Т1С1з), предложенных Циглером и Натта, которые оказывают влияние на геометрию указанного переходного комплекса. Могут быть также использованы различные факторы, способствующие ориентации мономерных молекул непосредственно перед их полимеризацией, например ориентирующее влияние кристаллической решетки мономера при его полимеризации в твердой фазе . В некоторых случаях важную роль может играть температура реакции в овязи с тем что свободная энергия присоединения очередного звена с той же конфигурацией, что и предыдущее, больше свободной энергии присоединения очередного звена с обратной конфигурацией, применяя низкие температуры (до —70°) при радикальной полимеризации, можно иногда получать достаточно чистые синдиотактические полимеры. [c.309]

    Метод Дебая — Шерера имеет наибольшее значение для изучения структуры полимерных материалов. В частности, он широко используется для исследования ориентированных поликристаллических образцов. В процессе растяжения кристаллы оказываются определенным образом ориентированными относительно оси растяжения, поэтому на рентгенограмме ориентированных образцов появляется текстура — кольца вырождаются в дуги большей или меньшей длины. Такие картины дифракции называют текстуррент-генограммами (рис. 3.3, см. вклейку). Распределение интенсивности вдоль дуги характеризует степень ориентации кристаллитов относительно оси вытяжки. Для исследования полимеров наибольшее значение имеют текстуррентгенограммы предельно ориентированных образцов, когда все кристаллы ориентированы одной и той же осью (обычно ось с кристаллографической ячейки) вдоль направления растяжения. Такая ориентация называется аксиальной текстурой. Рентгенограммы этих образцов близки к точечным. Именно по таким рентгенограммам обычно определяют тип и параметры элементарной кристаллографической ячейки и период идентичности вдоль цепи. [c.81]

    Однако картина не всегда столь проста. Бывают условия, при которых структура полимера при растяжении успевает самоупрочниться из-за развития молекулярной ориентации или кристаллизации быстрее, чем развиваются дефекты, приводящие к разрушению. Такой образец обладает высокой прочностью при растяжении. В то же время образец той же резины, но другой физической структуры из-за меньшей интенсивности развития процесса упрочнения разрывается при меньшем напряжении. Примерами образцов второго типа являются эластомеры с преобладанием глобулярной структуры. Как известно, глобулы ориентируются значительно слабее, чем фибриллы, а к моменту разрыва они не успевают полностью развернуться, поэтому вулканизаты бутилкаучука, полученного из разных растворителей [22] и обладающие преимущественно глобулярной и фибриллярной структурами, имеют прочность [c.46]

    Значительно менее исследована структура поверхностных слоев сшитых трехмерных полимеров. Исследование ориентации молекулярных цепей по отношению к границе раздела, проведенное методом двойного лучепреломления, для пленок сшитого эпоксидного олигомера ЭД-20 показало [291], что ориентация зависит от типа сшивателй. При использовании метафенилендиамина межузловые отрезки цепей ориентируются преимущественно перпендикулярно на поверхности пленки, а с парафенилендиамином - параллельно, т.е. характер ориентации межузловой цепи сильно зависит от природы узла. Получена зависимость толщины упорядоченного поверхностного слоя от толщины пленки. Было найдено, что толщина упорядоченного слоя составляет величину (0,5 - 0,6)-10 м. Это на порядок больше толщины слоя для линейных аморфных полимеров. Эффекты такого рода отмечены и для поверхностных слоев сшитых полимеров на границе раздела с твердым телом. Изменение плотности упаковки макромолекул в граничном слое положено в основу эмпирического метода оценки содержания граничных слоев. [c.103]

    Финкельман и сотр. [61] сообщили о хорошей планарной ориентации, получаемой при использовании ориентированного полиимидного покрытия. Отметим, что приготовление полностью ориентированных однородных образцов требовало отжига нематического полимера при температуре чуть ниже точки просветления в течение нескольких часов. Эффективность ориентирующего влияния поверхности зависела от химической структуры полимера, т. е. от длины гибкой развязки и типа самой полимерной цепи. Полимеры с длинной развязкой ведут себя подобно низкомолекулярным жидким кристаллам и ориентируются достаточно легко. При помощи аналогичной методики [62] охлаждением однородно ориентированной нематической фазы удалось также получить оптически однородный образец ( 0,5 см ) и смектической А фазы [63]. [c.232]

    Поверхностный слой высококристаллический, но имеет так называемую бессферолитную структуру, которая, судя по данным рентгенографических исследований, приближается к фибриллярной структуре, характерной для волокон Макромолекулы в поверхностном слое, как указывалось выше, сильно ориентированы в направлении течения расплава при заполнении литьевой формы. Центральная часть изделия состоит из сферолитов, содержащих кристаллиты моноклинного типа (стабильная кристаллическая форма ПП) Для этой части изделия характерна слабая ориентация кристаллитов в направлении течения. Промежуточный слой также содержит сферолиты, однако другого типа по сравнению с имеющимися в центральной части изделия. Из-за специфики кристаллизации полимера в этом слое формируются сферолиты дискового типа, подобные тем, которые возникают при получении экструзионных пленок Эти сферолиты образуют стержнеподобные агломераты и, в свою очередь, состоят из кристаллитов нестабильного гексагонального типа. [c.236]


Смотреть страницы где упоминается термин Ориентированные полимеры типы структур: [c.217]    [c.371]    [c.335]    [c.525]    [c.280]    [c.522]    [c.100]    [c.362]   
Физика полимеров (1990) -- [ c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентированные структуры

Полимеры типы структур

Типы полимеров



© 2025 chem21.info Реклама на сайте