Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК-полимераза в вирусной репликации

    После начала репликации вирусного генома транскрипция мн -гих (хотя и не всех) ранних генов угнетается и активируется считывание поздних генов. Промоторы поздних н ранних генов различны в частности, первые как будто несколько беднее А-Т-парами, чем вторые. Считают, что поздние промоторы узнаются модифицированной вирус-специфической РНК-полимеразой модификация заключается в том, что в состав этого фермента включается субъединица клеточной РНК-полимеразы П. [c.307]


    После трансляции вновь синтезированных мРИК и накопления соответствующих белков начинается собственно репликация генома ВВС. Сначала синтезируются точные, полноразмерные (+)копии вирусного генома. Для этого необходимо подавить буксование РНК-полимеразы на полиуридиловых последовательностях матрицы, а также внутреннюю терминацию. Предполагают, что такое регуляторное переключение происходит в результате взаимодействия вирус-специфических белков (вероятно, белка N) с растущей (+)це-пью. Во всяком случае, все имеющиеся в зараженной клетке полноразмерные молекулы (+)РНК находятся там в виде РНП, сходного по структуре с РНП, содержащим геномную (—)РНК. В заключение на полноразмерной (+)РНК синтезируются (—)нити, которые включаются в состав дочерних вирионов. [c.325]

    Необычайный интерес в последние годы вызвали РНК-содержащие онкогенные вирусы. Большинство исследователей, занимающиеся биохимической генетикой и функциями нуклеиновых кислот, считали, что ДНК образуется только за счет репликации других молекул ДНК- Если транскрибирование РНК с ДНК может протекать свободно, то обратный процесс, а именно образование ДНК на РНК-матрице, считался маловероятным. Большой неожиданностью поэтому оказалось обнаружение во многих онкогенных РНК-содержащих вирусах, и в том числе в вирусах, вызывающих у животных лейкоз, РНК-зави-симой ДНК-полимеразы (т.е. обратной транскриптазы). Этот фермент обнаруживается в зрелых вирусных частицах. Наиболее тщательно очищенный фермент вирусов миелобластоза птиц состоит из двух белковых субъединиц, имеющих мол. вес ПО ООО и 70 000, и содержит два атома связанного Zn +. Для функционирования фермента необходима короткая затравка и матричная цепь РНК. При этом сначала получается гибрид ДНК—РНК, из которого затем (вероятно, после гидролитического расщепления цепи РНК под действием РНКазы Н, разд. Д, 5, в) получается двухцепочечная ДНК. Таким образом, заражение РНК-содержащими вирусами сопровождается образованием [c.288]

    Пока нет веских доказательств существования РНК-зависимого синтеза РНК в нормальных клетках млекопитающих. Строго доказан такой синтез РНК при исследовании клеток, зараженных РНК-содержащими вирусами. Теоретически для репликации вирусной РНК имеется несколько возможностей. Например, под влиянием вирусной РНК может индуцироваться синтез ДНК, которая затем служит матрицей для воспроизведения вирусной РНК. Но возможен и прямой синтез РНК на вирусной матрице. Эти два варианта можно различить, исследуя активность ДНК-полимеразы, ДНК-зависимой РНК-полимеразы и РНК-зависимой РНК-полимеразы. Оказалось, что после инфицирования в экстрактах клеток активность последнего фермента заметно увеличивается, тогда как активность первых двух ферментов остается прежней. Эти результаты и данные изотопных методов исследования подтверждают существование РНК-зависимой РНК-полимеразы в животных клетках. Описываемый фермент обнаружен в нескольких типах клеток, зараженных РНК-содержащими вирусами,— в бактериях, клетках млекопитающих и растений. [c.78]


    Известные в настоящий момент собранные за многие годы данные подтверждают положение о том, что вирус гриппа является уникальным среди неонкогенных РНК-содержащих вирусов, поскольку он требует функционирования ядерной РНК-полимеразы II клетки-хозяина, т. е. фермента, который синтезирует предшественников клеточных мРНК [5, 52, 64, 85, 95]. Наиболее определенное доказательство по этому поводу представляет тот факт, что а-ама-нитин — специфический ингибитор РНК-полимеразы П — ингибирует репликацию вируса и что в мутантных клетках, содержащих а-аманитинустойчивую РНК-полимеразу И, репликация вируса также не ингибируется этим химическим веществом 52, 85, 95]. Было показано, что активность РНК-полимеразы П необходима для транскрипции вирусной РНК даже при первичной транскрипции, так как при добавлении в начале инфекции а-аманитин ингибирует всю обнаруживаемую транскрипцию вирусной РНК 67]. [c.67]

    Третий мутант с дефектным сегментом 8 РНК — tsG412 — имеет поздний дефект в вирусной репликации [123]. Этот мутант был получен путем 5-ФУ-мутагенезом от N-рекомбинанта вируса FPV/Rosto k (90/N3), который несет сегменты 2 и 8 РНК от вируса N, а все остальные — от вируса FPV. При непермиссивной температуре все виды вирусспецифической РНК синтезируются нормально, и активность РНК-зависимой РНК-полимеразы не ослаблена в клетках, инфицированных tsG412, по сравнению с таковой [c.231]

    В числе продуктов ранних генов — фагоспецифическая РНК-полимераза, закодированная в гене 1. Это относительно простой фермент, который в отличие от бактериальной РНК-полимеразы содержит всего одну полипептидную цепь (Мг=107 ООО). Вирусный фермент узнает иной набор промоторов — поздние промоторы, которые имеют сходные между собой, но не идентичные первичные структуры. Поздние промоторы расположены преимущественно в поздней области фагового генома, но встречаются и в ранней, в частности они предшествуют участку оП, с которого начинается репликация вирусной ДНК. Поздние гены транскрибируются с разной эффективностью и в определенной последовательности. Не все механизмы этой регуляции расшифрованы, но некоторые из них достаточно понятны. В частности, в поздней области есть районы, которые организованы сходно с активно транскрибируемы. районом генома нитчатых фагов (см. с. 290) такие участки имеют несколько промоторов и ограничены общим сильным терминатором. Отсюда считывается набор молекул мРНК разных размеров, но с одинаковыми З -концами. Чем ближе ген примыкает к тер.минатору, тем чаще он представлен в таком наборе. мРНК- С другой стороны, есть участки ДНК, которые содержат общий промотор и несколько последовательно расположенных относительно слабых терминаторов, ко- [c.298]

    Естественно, что помимо субгеномных (+)РНК одним из продуктов репликации / транскрипции должны быть и полноразмерные (геномные) (+)РНК, которые, во-первых, направляют синтез белков, закодированных в 5 -концевом районе генома, а во-вторых, включаются в дочерние вирусные частицы. Полноразмерные (-Н)РНК считываются с такой же (—)матрицы, как и субгеномные мРНК- Динамика образования различных видов вирус-специфических РНК различна синтез (—)РНК более характерен для ранних стадий инфекционного цикла, а синтез (+)РНК — для поздних обнаруживаются и различия в динамике синтеза субгеномных и полноразмерных (+)РНК. Известно, что в этой регуляции принимают участие вирус-специфические белки, но конкретные их функции пока не выяснены, если не считать, что некоторые из них входят в состав РНК-зависимой РНК-полимеразы. [c.323]

    Многие вирусы имеют геном в виде (—)нитн РНК. У некоторых таких вирусов геном представлен единой непрерывной молекулой, а у других он сегментирован, т. е. состоит из нескольких молекул. Общим свойством вирусов с (—)РНК-геномом является то, что в состав их вирусных частиц входит РНК-полимераза, способная копировать РНК-матрицу. Биологический смысл такой организации понятен. Поскольку, по определению, (—)РНК не может выполнять функции мРНК, для образования своих мРНК вирус должен внести в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии. Другое общее свойство этих вирусов заключается в том, что матрицей для репликации / транскрипции является не свободная РНК, а вирусный рибонуклеопротеид (РНП) — молекула РНК, равномерно покрытая вирус-специфическим белком. [c.323]

    В зараженной клетке ДНК этих двух вирусов переходит в ковалентно-непрерывную форму, которая, как известно, удобна для репликации. Однако у обоих вирусов репликация ДНК-генома осуществляется при посредстве промежуточных линейных молекул РНК. Эти РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом РНК-полимеразой П. Транскрибируется только одна из нитей вирусной ДНК, причем промоторы и терминаторы расположены на кольцевом геноме таким образом, что наряду с субгеномными мРНК образуются молекулы (Ч-)РНК более длинные, чем геном. Ясно, что в длинных транскриптах должен быть прямой концевой повтор. Этот повтор способствует преодолению трудностей, возникающих при снятии ДНК-копии с З -конца линейной матрицы. [c.316]

    Сам синтез осуществляется вирус-специфической РНК-полимеразой. Для работы очищенных препаратов этого фермента требуется не только матрица, но и затравка — комплементарный матрице олигонуклеотид другими словами, фермент катализирует элонгацию цепи РНК, но не может осуществить инициацию этой цепи. Вновь синтезируемая цепь формирует межцепочечный дуплекс с матрицей. Из-за этого, а также из-за отсутствия соответствующих затравок очищенная РНК-полимераза вируса полиомиелита не способна осуществлять полный цикл репликации вирусного генома in vitro. Есть основания полагать, что и in vivo лля репликации РНК вируса полиомиелита используется многокомпонентный аппарат, который включает помимо РНК-полимеразы и VPg по крайней мере еще [c.320]


    Тремя главными матричными процессами, присущими всем без исключения живым организмам, являются репликация ДНК, транскрипция и трансляция. Репликация ДНК происходит с участием ферментов ДНК-полимераз. Роль матриц играют разделенные цепи двунитевой материнской ДНК. Субстратами являются дезоксирибонуклеозид-5 -трифосфаты. Транскрипция осуществляется с помощью ферментов РНК-полимераз. Матрицей служит одна из нитей двунитевой ДНК, а субстратами — рибонуклеозид-5 -трифосфаты. Трансляция происходит на рибосомах с участием информационной РНК (мРНК) в качестве матрицы и аминоз1Ц1л-тРНК в качестве субстратов. Кроме того, при заражении клеток вирусами, у которых наследственная информация содержится в молекулах вирусных РНК, в клетках начинается запрограммированный этими РНК синтез ферментов, называемых обычно РНК-репликазами, которые катализируют биосинтез РНК, используя в качестве матриц молекулы РНК. Некоторые вирусы, вызывающие злокачественные новообразования, содержат ферменты, катализирующие обратную транскрипцию — синтез ДНК с использованием в качестве матриц молекул РНК. Эти ферменты часто называют обратными транскриптазами или ревертазами. Более строгие названия двух последних групп ферментов соответственно — РНК-зависимая РНК-полимераза и РНК-зависимая ДНК полимераза. [c.174]

    Все функции нуклеиновых кислот в организме осуществляются в комплексах с белками. В то же время лишь некоторые белки аыполняют свои функции в комплексе с нуклеиновыми кислотами. Такие комплексы называются иуклеопротеидами. Одни нуклеопротеиды существуют в течение длительного времени, например хроматин, рибосомы, вирусные частицы. Другие возникают ма короткое время и, выполнив свою функцию, диссоциируют—к ним относятся комплексы, образуемые ДНК- и РНК-полимеразами, регуляторными белками, репрессоры или активаторы и т. п. Нуклеопротеиды осуществляют такие важные процессы в клетке, как репликация, транскрипция и трансляция, транспорт нуклеиновых кислот из ядра в клетку, секреция белков в эукариотических клетках и т. п [c.397]

    Ранние исследования Корнберга и его коллег открыли путь к прямому изучению репликации ДНК, однако и по сей день у нас нет полной и детальной картины процесса репликации, даже в случае вирусной ДНК, образующей всего лишь одну небольщую хромосому. Сегодня благодаря усилиям Корнберга и многих других исследователей мы знаем, что для репликации необходима не только ДНК-полимераза. В этом процессе, по-видимому, участвуют больше двадцати различных ферментов и белков, каждый из которых выполняет определенную функцию, Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки начала репликации, расплетание родительского дуплекса, удержание его цепей на достаточном расстоянии друг от друга, инициацию синтеза новых дочерних цепей, их элонгацию, закручивание цепей в спираль и, наконец, терминацию репликации. Все эти этапы процесса репликации протекают с очень высокой скоростью и исключительной точностью. Весь комплекс, состояший более чем из двадцати репликативных ферментов и факторов, называют ДНК-репликазной системой, или реплисомой. Рассмотрим в общих чертах основные этапы процесса репли- [c.902]

    У фага MS2 молекулярный вес частиц составляет 3,6-10 содерллание РНК — 31 % РНК находится в нем в виде компактной структуры с большим количеством водородных связей эта РНК инфекционна для бактериальных протопластов. РНК-содержащие фаги представляют значительный интерес для изучения репликации РНК в связи с образованием двухцепочечных молекул РНК (стр. 59) [136—139, 144]. Возможно, что при внедрении РНК-содержащего вируса в клетку РНК играет роль матрицы (стр. 271) для синтеза РНК-зависимой РНК-полимеразы (стр. 246) и белка вирусной оболочки. Образовавшаяся в результате полимераза синтезирует затем комплементарную цепь РНК, приводя к образованию двухцепочечной репликативной РНК. На этой синтезированной полимеразой комплементарной цепи двухцепочечной формы по,лимераза образует новые цепи вирусной РНК. К этому процессу мы еще вернемся в гл. XII (стр. 249). [c.161]

    Хотя приведенные данные подтверждают, но еще не доказывают существования самостоятельной РНК-полимеразы, для которой затравкой служит РНК, наличие РНК-зависимой РНК-полимеразы было отчетливо показано в опытах с клетками, зараженными РНК-содержащим вирусом, в частности на клетках асцитной опухоли Кребс II, зараженных РНК-содержащим вирусом ЕМС [137]. Репликация вирусной РНК может осуществляться несколькими механизмами. ] 1апример, вирусная РНК может индуцировать синтез ДНК, которая в свою очередь обеспечит синтез вирусной РНК. Или же возможен прямой синтез РНК на вирусной РНК в качестве матрицы. Чтобы установить, каким же из этих путей осуществляется репликация вирусной РНК в клетках, зараженных вирусом ЕМС, изучали активность трех полимераз а) ДНК-нолимеразы б) ДНК-зависимой РНК-полимеразы и в) РНК-зависимой РНК-полимеразы. [c.247]

    На основании приведенных данных Очоа и его сотрудники [172, 173] пришли к выводу, что репликация вирусной РНК родительского типа ( плюс цепь) происходит в два этапа. На первом этапе внедряющаяся цепь вирусной РНК действует как т-РНК (стр. 271), т. е. вступает в контакт с рибосомами клетки-хозяина и контролирует образование РНК-зависимой полимеразы и синтез белков вирусной оболочки. С помощью полимеразы на <шлюс -цепи, действующей как матрица, образуются комплементарные минус -цепи, и в результате происходит образование двухцепочечной репликативной формы РНК. [c.250]

    Нуклеиновые кислоты вирусов реа шзуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию). [c.27]

    Компоненты крупных ДНК-содержащих вирусов и несколько менее крупных вирусов животных синтезируются в клетке-хозяине, по-видимому, обычным образом [246, 247, 265]. Иными словами, при размножении вируса протекают два процесса с одной стороны, это репликация ДНК, с другой — транскрипция ДНК в информационную РНК и последующая трансляция РНК в белок. Реплицируется ДНК, вероятно, как единое целое, т. е. от одного конца молекулы до другого. Необходимые для этого ДНК-полимераза и лигаза, хотя и похожи на ферменты хозяина, все же в случае большинства вирусов животных, вероятно, вирусоспецифичны. Поэтому при размножении вируса процессы транскрипции (синтезируемой информационной РНК) и трансляции (синтез белков, а следовательно, и ферментов) должны быть запущены раньше, чем начинается репликация вирусной ДНК, если для процесса репликации необходимо присутствие вирусоспецифичных ферментов. Эти процессы, по крайней мере на первых этапах, должны осуществляться с участием ферментных систем хозяина. Процесс транскрипции находится под контролем разнообразных регулирующих механизмов, благодаря чему одни участки транскрибируются раньше, другие — позже. Оказалось, что процессы репликации вируса во всех случаях можно подразделить на ранние, средние и поздние (т. е. синтез иРНК и белков). Функции многих продуктов этих процессов неизвестны, но несомненно, что среди продуктов ранних генов есть такие, которые блокируют синтез ДНК и белков хозяина. [c.234]

    Репликация геномов РНК-вирусов точно так же, как и репликация ДНК, связана с образованием комплементарных полинуклеотидных цепей. У большинства РНК-вирусов этот процесс катализируют РНК-зависимые РНК-полимеразы (репликазы), кодируемые РНК-хромосомой вируса. Эти ферменты часто включаются в дочерние вирусные частицы, и тогда при вирусной инфекции они уже сразу имеются в наличии, т.е. могут немедленно начинать репликацию вирусной РНК. У так называемых вирусов с негативным геномом, к которым принадлежа , в частности, вирусы гриппа и везикулярного стоматита, репликазы всегда включаются в капсид. Вирусы этой группы называются так потому, что > них инфицирующая цепь не кодирует никаких белков только комплементарная ей цепь несет необходимые для этого нуклеотидные последовательности. Таким образом, инфицирующая цепь не может индуцировать размножение вируса без предобразованной репликазы. У РНК-вирусов с позитивным геномом, например у вируса полиомиелита, дело обстоит иначе здесь вирусная РНК может выступать в роли мРНК, и у этих вирусов голый геном инфекционен. [c.317]

Рис. 5-73. Примеры, иллюстрирующие разнообразные способы репликации вирусных геномов. В двух случаях, как мы видим, к концам цепей ДНК ковалентно присоединены терминальные белки, эти белки играют важную роль в соответствующем пропессе репликапии. Обратите внимание на главное различие между РНК-вирусами с позитивными и негативными геномами оно заключается в том, что вирусы с минус -цепью, прежде чем образовать вирусные белки, должны синтезировать плюс -цепь. Для этой цели капсид РНК-вируса должен нести в себе одну или несколько молекул вирусной РНК-зависимой РНК-полимеразы (репликазы). Справа в рамке показан для каждого случая конечный РНК- или ДНК-продукт, Рис. 5-73. Примеры, иллюстрирующие разнообразные <a href="/info/1633434">способы репликации</a> вирусных геномов. В <a href="/info/1696521">двух</a> случаях, как мы видим, к <a href="/info/626669">концам цепей</a> ДНК ковалентно присоединены терминальные белки, эти белки играют <a href="/info/1600003">важную роль</a> в соответствующем пропессе репликапии. Обратите внимание на главное <a href="/info/502252">различие между</a> РНК-вирусами с позитивными и негативными геномами оно заключается в том, что вирусы с минус -цепью, прежде чем образовать <a href="/info/149922">вирусные белки</a>, должны синтезировать плюс -цепь. Для этой цели капсид РНК-вируса должен нести в себе одну или <a href="/info/1049720">несколько молекул</a> вирусной РНК-зависимой РНК-полимеразы (репликазы). Справа в рамке показан для каждого <a href="/info/1000003">случая конечный</a> РНК- или ДНК-продукт,
    ГО копированием 5 -геномного конца. У этих ДИ РНК отсутствует, таким образом, геномный сайт узнавания транскриптазы и лидер-последовательность на З -конце, а потому они неспособны действовать как матрицы для транскрипции поли (А) -содержащих кэппированных сигналов, хотя малый фрагмент РНК часто транскрибируется [30]. Новый сайт связывания полимеразы, генерированный на его З -конце, по всей вероятности, имеет более высокую аффинность к вирусной полимеразе (репликазе), чем З -геномный конец, и поэтому интерферирует с репликацией РНК стандартного вируса, конкурируя более эффективно за ограниченное число молекул полимеразы. Большая часть ДИ РНК из не сегментированных минус-цепочечных вирусов принадлежит к этому классу [30]. Хотя большая часть этих ДИ РНК имеет только одну точку делеции, возможность множественных делеций в некоторых ДИ РНК не должна быть исключена 2) 3 ДИ РНК эти ДИ РНК будут являться копией 5 ДИ РНК, т. е. будут содержать З -конец, но у них отсутствует 5 -конец геномной РНК. 5 -Конец этой ДИ РНК будет образован копированием З -конца ДИ РНК. Однако на сегодня ни одна из таких ДИ РНК неизвестна, а это предполагает, что 5 -конец геномной РНК не отвечает за репликацию вируса и морфогенез. В дополнение к активности связывания, полимеразы последовательность 5 -конца может иметь другие свойства, такие, как, например, сигнал нуклеации для сборки нуклеопротеида и образования вириона и т. д. Этот класс ДИ РНК, в случае его обнаружения, должен транскрибировать поли (А)-содержащие кэппированные сигналы таким же образом, что и геномная РНК 3) 5 —3 ДИ РНК эти ДИ РНК содержат внутреннюю делецию (делеции), но сохраняют оба 5 и 3 геномных конца и ожидается, что они будут транскрибироваться в молекулы РНК. Большая часть, если не все, ДИ РНК вируса гриппа [24, 51, 59] и некоторые ДИ РНК вирусов Сендай и УЗУ (вируса везикулярного стоматита) принадлежат к этому классу [4, 53] 4) сложные ДИ РНК любые ДИ РНК, которые не относятся ни к одному из этих упомянутых классов, будут входить в эту группу. Здесь происходят интенсивные изменения в ДИ РНК с образованием новых последовательностей и/или новых концов. УЗУ ДИ ЬТ2 [38], 18 3 ДИ РНК вируса леса Семлики [41] и мозаичная РНК вируса гриппа [43] являются примерами ДИ РНК этого класса. Транскрипционные свойства [c.259]


Смотреть страницы где упоминается термин ДНК-полимераза в вирусной репликации: [c.80]    [c.278]    [c.282]    [c.316]    [c.320]    [c.153]    [c.277]    [c.278]    [c.620]    [c.236]    [c.278]    [c.282]    [c.495]    [c.426]    [c.117]    [c.318]    [c.91]    [c.269]    [c.64]    [c.179]    [c.123]    [c.62]   
Гены и геномы Т 2 (1998) -- [ c.344 ]




ПОИСК







© 2025 chem21.info Реклама на сайте