Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК-раскручивающий белок

    Образование водородных связей играет важную роль в некоторых биологических системах. Интересна структура полипептидной цепи, свойственной многим белкам, которая стабилизирована с помощью водородных связей. Полипептидная цепь изогнута в виде спирали так, что между отдельными витками возникают водородные связи N—И.... ..0=С (рис. П1.38). При нагревании белка водородные связи рвутся, полипептидная цепь раскручивается, теряя упорядоченное строение, и белок денатурирует, превращаясь в нерастворимый коагулят. [c.208]


    Способность к денатурации. Все внешние факторы, которые приводят к ослаблению или нарушению водородных связей или стэкинг-взаимодействий, вызывают денатурацию нуклеиновых кислот. При этом происходит нарушение вторичной и третичной структуры нуклеиновых кислот, но сохраняется первичная структура молекул (рис. 8.13). Факторы, вызывающие денатурацию нуклеиновых кислот, абсолютно те же, что и факторы, приводящие к денатурации белков, но интенсивность денатурирующего действия конкретного фактора в случае нуклеиновых кислот может быть иной. При денатурации ДНК ее двойная спираль полностью или частично разделяется (раскручивается) на составляющие цепи. [c.282]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Все белки, которые были обследованы в присутствии очень высоких концентраций гуанидингидрохлорида, не содержали остаточных нековалентно связанных структур. Если все существующие дисульфидные связи были разорваны, то каждая полипептидная цепь полностью раскручивалась до конфигурации линейного статистического клубка, так что никакие структурные элементы нативной конформации при этом не сохранялись. Радиус инерции беспорядочно изгибающейся полипептидной цепи является функцией только числа аминокислотных остатков в цепи, а следовательно, функцией молекулярного веса цепи независимо от ее состава. Поэтому такие параметры, как молекулярный вес и гидродинамические параметры, вроде коэффициента седиментации и характеристической вязкости, могут быть прямо связаны друг с другом [137, 146, 147]. [c.424]

    С точки зрения строения денатурация является дезориентацией конфигурации молекулы белка. Она может совершаться путем развертывания или раскручивания складчатой или закрученной структуры или путем разделения молекулы белка на более мелкие фрагменты, которые затем уже могут раскручиваться (фиг. 91). [c.328]


    Коллагены. Это белки соединительной ткани. Примерно половина белков человеческого тела относится к коллагенам. В кипящей воде коллагены превращаются в растворимые желатины. Желатины в противоположность коллагенам легко перевариваются (т. е. гидролизуются). Возможно, что кипящая вода растягивает и раскручивает белковую молекулу и делает тем самым [c.330]

    Казеин относится к глобулярным белкам, и линейные макромолекулы его не обладают вытянутой формой, характерной почти для всех волокнообразующих полимеров. В процессе переработки глобулярные макромолекулы казеина вероятно раскручиваются и принимают более вытянутую форму. Если бы такие, изменения формы макромолекул не имели места, получение волокна, обладающего достаточной прочностью, из глобулярных белков не представлялось бы возможным. Несомненно также, что при вытягивании волокна происходит некоторая ориентация макромолекул. [c.239]

    Наши эксперименты с GAL 4 показывают, что, связываясь с ДНК, он, подобно А-репрессору, инициирует транскрипцию, соприкасаясь с какой-то другой молекулой, по-видимому с другим белком. Каким же образом GAL 4, связанный с UAS , может активировать процесс, который начинается на расстоянии нескольких сотен пар оснований Возможно, GAL 4 помогает какому-то белку связаться рядом с собой. Этот белок может раскручивать ДНК, и таким образом область вблизи начала гена становится более доступной для связывания других белков и полимеразы. Альтернативная возможность состоит в том, что этот белок связывается рядом с GAL 4, а затем каким-то образом перемещается вдоль спирали по направлению к началу гена, где он сам начинает транскрипцию или помогает связыванию полимеразы. [c.146]

    При репликации двухцепочечная ДНК должна разойтись на индивидуальные цепи с тем, чтобы каждая из них могла функционировать в роли матрицы. Разделению цепей ДНК содействуют молекулы специфических белков, стабилизирующих одноцепочечную структуру при продвижении репликационной вилки. Стабилизирующие белки стехиоме-трически связываются с одиночной цепью, не мещая при этом нуклеотидам выступать в роли матрицы (рис. 38.18). Наряду с разделением цепей должно происходить и раскручивание спирали (1 оборот на каждые 10 нуклеотидов), сопровождаемое скручиванием вновь синтезированных дочерних цепей. Учитывая время, за которое происходит репликация у прокариот, можно рассчитать, что молекула ДНК должна раскручиваться со скоростью 400 ООО об/сек, что совершенно невозможно. Следовательно, должны существовать множественные шарниры , расположенные по всей длине молекулы ДНК. Шарнирные функции выполняет специальный фермент (ДИК-топоизомераза), вносящий разрывы в одну из цепей раскручиваемой двойной спирали. Разрывы быстро зашиваются этим же ферментом без дополнительных энергетических затрат, поскольку необходимая энергия запасается в форме макроэргической ковалентной связи, возникающей между сахарофосфатным остовом цепи ДНК и топоизомеразой. Представленную на рис. 38.19 схему этого процесса можно сравнить с последовательностью событий сшивания разрыва в ДНК, катализируемых ДНК-лигазой. ДНК-топоизомеразы ответственны также за раскручивание суперспирализованной ДНК. Су-перспирализованная ДНК — это высокоупорядоченная структура, образуемая кольцевыми или сверх-длинными молекулами ДНК при закручивании вокруг гистонового кора (рис. 38.20). [c.78]

    При денатурации нарушаются форма и размеры молекул изменяется удельная оптическая активность белков увеличивается в>гЗкость растворов, так как глобулярная форма белков раскручивается с образованием ыитепидных молекул уменьшается растворимость белков и степень набухания происходит снятие с коллоидных частиц электрического заряда и др. [c.209]

    Для того чтобы новые участки материнских нитей становились доступными репликации, должно происходить разделение нитей. Это достигается с помощью специальных ферментов — геликаз, которые перемещаются в рассматриваемом случае влево вдоль обеих цепей материнской ДНК, раскручивая их. Такое направленное перемещение ферментов требует затраты энергии, и каждый акт перемещения обеих геликаз сопровождается гидролизом пирофосфатной связи в молекулах АТФ. Таким образом, геликазы обладают АТФазной активностью. Гелика-зы неидентичны, поскольку им приходится двигаться в различных физических направлениях двух полинуклеотидных цепей. В ходе продвижения вилки репликации в определенном направлении, в рассматриваемом случае влево, вилка, а следовательно, и геликазы, в силу антипараллельной ориентации комплементарных материнских цепей, по отношению к одной из них движутся от 3 - к 5 -концу, а по отношению к другой от 5 - к 3 -концу. В случае Е.соИ первая получила название геликазы а или В,ер-белка, вторая — геликазы II. [c.179]

    Но так происходит не всегда. Если мы будем подогревать яичный белок, а это фактически раствор белка в воде, то, как мы все знаем, он загустеет и превратится в студень. Почему же это случилось Оказывается, цепи, из которых состоит молекула яичного белка, при обычной температуре в растворе свернуты как бы в клубок, н поэтому они не образуют студня. При нагревании клубок раскручивается, получаются длинные цепи, которые и образуют сеть, даюшую студень. Однако сколько бы мы этот студень ни охлаждали, он не станет жидким. Яйцо, сваренное вкрутую, не станет сырым. Образовавшаяся сеть настолько крепка, что разрушить ее очень трудно. И, только применяя специальные приемы, ученым все-таки удалось это сделать. [c.22]


    Рис 10-17. Схема энхансерного воздействия белка ntr на синтез РНК гена глутамин-синтетазы Е. соИ. Связываясь с расположенными перед геном последовательностями ДНК, этот регуляторный белок повышает скорость транскрипции РНК-полимеразой. Хотя белок присоединяется к этим сайтам даже когда он не фосфорилирован, лишь фосфорилированная форма (ntr -фосфат) может активировать транскрипцию. Вероятно, для функционирования белка необходимы контакты с полимеразой, которые увеличивают присущую этому ферменту способность раскручивать ДНК и образовывать открытый комплекс (см. рис. 9-65), как показано на рисунке (см. рис. 10-18). [c.189]

    Известно, что делящаяся клетка, а вместе с ней и ядро, могут находиться в двух состояниях в митозе (деление) и интерфазе (состояние между двумя. митозами). Во вре.мя митоза наследственная информация, упакованная в хромосомах, поровну распределяется между дочерни.ми клетками. В интерфазе, когда геном находится в рабочем состоянии , наследственная информация реализуется. При этом хромосо.мы переходят в состояние хроматина. Суперспирализованная с помощью специальных белков ДНК, частично раскручивается, сохраняя структуру двойной спирали. [c.76]

    План построения белка зашифрован в ДНК и находится в ядре. Между тем сам процесс осуществляется на рибосомах, которые в основном расположены в цитоплазме. Молекулы ДНК слшпком велики и через поры ядра выйти не могут. Передача информации от ДНК осуществляется с помощью информационной РНК (и-РНК). Показано, что в определенные моменты жизия клетки двойная спираль ДНК раскручивается и на оголенной нити ДНК, как на матрице, строится молекула и-РНК. Процесс этот получал название транскрипции, т. е. неренисывання. В результате процесса транскрипции образуется РНК комплементарная, т. е. соответственная той цепочке ДНК, на которой она строится. Так, если в молекуле ДНК имеется азотистое основание гуанин, то в РНК — цитозин, и наоборот. В ДНК комнивментарной парой является адекин — тимин. Одвако в составе [c.34]

    ДНК в клетке обычно находится в комплексе с белками (см. разд. 1.1.ж). Связанный белок слегка раскручивает спираль ДНК, соответственно и число витков спирали на единицу длины становится меньше, чем у свободной В-ДНК. При удалении белка восстанавливается обычное число правозакрученных (положительных) витков спирали. В линейной молекуле ДНК это происходит достаточно легко, поскольку обе цепи свободно вращаются одна вокруг Другой. В замкнутой же кольцевой молекуле общее число витков спирали топологически фиксировано, и число оборотов одной цепи вокруг Другой не может быть изменено без компенсаторного образования витков противоположного знака где-нибудь в другом месте молекулы. Итак, когда естественные кольцевые дуплексы освобождаются от белков, с которыми они часто бывают связаны in vivo, происходит следующее 1) число правозакрученных (положительных) витков снрали возрастает до величины, характерной ДЛЯ В-ДНК 2) в самом дуплексе образуется столько же витков противоположного знака, чтобы компенсировать увеличение скрученности спирали. О таких молекулах говорят, что они обладают отрицательной сверхспиральностью (рис. 1.10). При внесении одного разрыва в сверхспиральную кольцевую ДНК сверхспиральность снимается и кольцевая структура переходит в релаксированное состояние, при котором топологические ограничения отсутствуют. Любые химические или физические изменения, приводящие к уменьшению числа витков спирали на молекулу, уменьшают или вообще снимают отрицательную сверхспиральность в замкнутой кольцевой ДНК. [c.45]


Смотреть страницы где упоминается термин ДНК-раскручивающий белок: [c.251]    [c.450]    [c.176]    [c.287]    [c.312]    [c.109]    [c.149]    [c.44]    [c.189]   
Основы биохимии (1999) -- [ c.251 , c.254 ]




ПОИСК







© 2024 chem21.info Реклама на сайте