Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интеграция фагов

Рис. 4.14. Интеграция (включение) фага лямбда в хромосому Es heri hia oli и его освобождение из хромосомы (исключение). В фаговой частице ДНК представлена линейной двойной спиралью с неспаренными комплементарными концами. В растворе или в бактериальной клетке липкие комплементарные концы связываются друг с другом, и разрыв в каждой цепи закрывается с помощью лигазы. После этого замкнутое двухцепочечное кольцо подходит к хромосоме (между генами gal и Ыо), обе двойные спирали разрываются и образовавшиеся свободные концы воссоединяются крест-накрест. В результате фаговая ДНК оказывается включенной (встроенной, или интегрированной) в хромосому хозяина. Фаг превратился теперь в профаг, и клетка стала лизогенной (в данном случае по фагу лямбда), В результате обратного процесса может произойти выключение ДНК фага и переход ее в автономное состояние. Рис. 4.14. Интеграция (включение) <a href="/info/32799">фага лямбда</a> в хромосому Es heri hia oli и его освобождение из хромосомы (исключение). В <a href="/info/1403672">фаговой частице</a> ДНК представлена <a href="/info/1221085">линейной двойной</a> спиралью с неспаренными комплементарными концами. В растворе или в <a href="/info/32980">бактериальной клетке</a> липкие комплементарные концы связываются друг с другом, и разрыв в <a href="/info/1324576">каждой цепи</a> закрывается с помощью лигазы. После этого <a href="/info/951968">замкнутое двухцепочечное</a> кольцо подходит к хромосоме (<a href="/info/700408">между генами</a> gal и Ыо), обе <a href="/info/1016243">двойные спирали</a> разрываются и образовавшиеся <a href="/info/518405">свободные концы</a> воссоединяются крест-накрест. В результате фаговая ДНК оказывается включенной (встроенной, или интегрированной) в хромосому хозяина. Фаг превратился теперь в профаг, и клетка стала лизогенной (в данном случае по <a href="/info/32799">фагу лямбда</a>), В <a href="/info/1486673">результате обратного</a> процесса может произойти выключение ДНК фага и переход ее в автономное состояние.

Рис. 15.12. Сайт-специфическая рекомбинация, представленная на примере интеграции бактериофага лямбда в хромосому клетки-хозяина, С помощью специфического белка кольцевая ДНК фага своим участком att В присоединяется к участку att X на бактериальной ДНК, расположенному между генами Ыо и gal затем в результате разрыва и перекрестного воссоединения двойных цепей ДНК фаг включается в хромосому. (См. также рис. 4.14.) Рис. 15.12. <a href="/info/33360">Сайт-специфическая рекомбинация</a>, представленная на примере интеграции <a href="/info/1339141">бактериофага лямбда</a> в хромосому <a href="/info/1304812">клетки-хозяина</a>, С помощью <a href="/info/490203">специфического белка</a> кольцевая ДНК <a href="/info/1435575">фага своим</a> участком att В присоединяется к участку att X на бактериальной ДНК, <a href="/info/168640">расположенному между</a> генами Ыо и gal затем в результате разрыва и перекрестного воссоединения <a href="/info/33637">двойных цепей</a> ДНК фаг включается в хромосому. (См. также рис. 4.14.)
Рис. 150. Механизм сайт-специфической рекомбинации, ведущей к интеграции ДНК фага "к и клеточной ДНК Рис. 150. Механизм <a href="/info/33360">сайт-специфической рекомбинации</a>, ведущей к интеграции ДНК фага "к и клеточной ДНК
Рис. 149. Общая схема интеграции генома фага к и клеточной ДНК Тонкие линии — фаговая ДНК жирные — ограниченные участки клеточной ДНК Рис. 149. <a href="/info/57985">Общая схема</a> интеграции генома фага к и клеточной ДНК <a href="/info/463582">Тонкие линии</a> — фаговая ДНК жирные — ограниченные участки клеточной ДНК
    Сайт интеграции фага [c.201]

    Различные фаги, осуществляющие специфическую трансдукцию, переносят только те бактериальные гены, которые расположены вблизи сайта их интеграции в хромосому. Показаны сайты интеграции фагов (>. aff) и ф80 (ф80 aff). [c.201]

Рис. 151. Схема интеграции генома фага Ми и клеточной ДНК Рис. 151. <a href="/info/32801">Схема интеграции</a> генома фага Ми и клеточной ДНК
    Предпосылкой успешного переноса генов при специфической трансдукции (в отличие от неспецифической) является интеграция фага в геном клетки-хозяина. [c.466]


    Первая изученная система сайт-специфической рекомбинации — это интеграция фага лямбда в хромосому бактерии-хозяина. Поскольку она описана в главе о вирусах (см. гл.. ХП1), мы не будем здесь на ней останавливаться, от.метим только, что в отличие от рассмотренных случаев хромосо.мы бактерии и фага не гомологичны, а для рекомбинации необходимы специальные последовательности и специализированный фермент. [c.104]

    Чтобы обеспечить интеграцию, фаг должен синтезировать как можно больше белка Int и как можно меньше белка Xis. Как [c.73]

    АТТ-Сайты — участки фаговой и бактериальной хромосом, рекомбинация между которыми приводит к интеграции или исключению фага. [c.469]

    В интеграции фага и бактерии участвует фермент, детермииирув мый фагом. Профаг может придавать бактерии новые свойства. Это явление названо конверсией. [c.137]

    Внедрение и исключение осуществляются посредством рекомбинации в специфических локусах бактериальной и фаговой ДНК, получивших название сайтов присоединения или ait-сайтов (от англ. atta hment). В бактериальной генетике сайт присоединения ДНК фага лямбда называется att этот локус был определен по наличию в нем профага X в лизогенных штаммах и по локализации мутаций, предотвращающих интеграцию фага лямбда. Реакция рекомбинации изображена на рис. 35.11. Сайт присоединения на бактериальной хромосоме, обозначенный как attB, представлен компонентами последовательности ВОВ. Сайт присоединения на фаговой ДНК, attP, состоит из компонентов POP. Последовательность [c.453]

    Многочисленные опыты по Р1-трансдукции большого числа генов, ранее нанесенных на карту хромосомы Е. соН, на основе данных о рекомбинации при конъюгации показали, что сцепление двух генов на бактериальной хромосоме может быть установлено по относительной частоте их совместной трансдукции. Чем выше эта частота, тем больше сцепление. Это вполне естественно, так как чем ближе расположены два гена, тем больше вероятность того, что они окажутся в одном и том же фрагменте, вырезанном из генома бактерии (и составляющем от него 3%), и попадут, следовательно, в одну и ту же трансдуцирующую частицу. Если, однако, проследить за трансдукцией генетических маркеров, настолько тесно сцепленных, что они почти неизбежно должны попасть в одну и ту же частицу фага, то мы убедимся в том, что все-таки не всегда бактерия-трансдуктант несет одновременно оба таких маркера. Это расщепление по очень тесно сцепленным маркерам, происходящее при трансдукции, несомненно, отражает характер процесса генетической рекомбинации, в результате которого трансдуцированные локусы донорного генома включаются в геном клетки-реципиента. Как видно из фиг. 178, для каждого акта интеграции необходимо два кроссинговера. Отсюда следует, что два тесно сцепленных генетических маркера донора, введенные в клетку-реципиент, могут попасть в один и тот же рекомбинантный геном только в том случае, если ни один из этих двух необходимых перекрестов не произойдет между ними. Вероятность того, что такой кроссинговер не произойдет между двумя маркерами, возрастает с увеличением их сцепления. Следовательно, по частоте совместной трансдукции можно судить о расстоянии, разделяющем два очень тесно сцепленных локуса. Таким образом, изучение совместной трансдукции позволяет выявить тонкую структуру небольших фрагментов бактериальной хромосомы. [c.358]

    Геномы клетки или фага иногда используют транспозон в собственных целях. В этом случае элемент ста1ю-вится статичным и играет роль в регуляции, участвуя в специфических событиях, подобных транспозиции. Примеры с Salmonella и фагом Ми показывают, чго регуляция может включать инверсию специфического сегмента ДНК, осуществляемую посредством рекомбинационного механизма, связанного с транспозицией. Эти процессы проявляют некоторое сходство с интеграцией фага лямбда. Таким образом транспозиционные механизмы принимают участие в целом ряде событий, от соединения негомологичных последовательностей ДНК до обеспечения специфических рекомбинационных процессов. [c.458]

    ХОДИТ взаимный перенос Р соединяется с В, а В — с Р, и ДНК фага становится частью молекулы ДНК бактерии (рис. 14). При этом на хромосоме образуются два новых att-сайта attBP — слева от профага и attPB — справа от него. Профаг стабилен в отсутствие белка Xis. Транскрипция гена xis блокируется репрессором фага К. При индукции профага, когда репрессия снимается (например, при УФ-облучении или при повышенной температуре, инактивирующей термочувствительный репрессор), белки Xis и Int катализируют процесс, обратный по отношению к интеграции фага. В результате происходит вырезание профага и снова получается кольцевая молекула ДНК фага X и исходная хромосома Е. oli (рис. 14). [c.97]

    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]


    Умеренный бактериофаг Я, F- и R-факторы бактерий — все способны интегрироваться с клеточной ДНК. Этот процесс связан с расщеплением генов, т. е. по своей химической природе он напоминает рекомбинацию. Однако в случае фага X для интеграции и исключения ДНК необходимо наличие также генов int и xis, котцрые отличаются от генов гес-локуса бактериальной клетки и от гена общей рекомбинации (гее) фага. Тем не менее в химическом отношении эти процессы также поразительно сходны с рекомбинацией. [c.287]

    К М.г.э. прокариот относят также умеренные фаги. Х-Фаги (лямбдоидные фаги) обычно встраиваются в одно место хромосомы, но при определенных условиях могут располагаться и в др. участках генома, ц-Фаги способны включаться в любые места бактериальной хромосомы, а также в ДНК мн. др. фагов и плазмид. Интеграция лямбдо-идных фагов обеспечивается ферментной системой, состоящей из клеточных белков и белков, кодируемых геномом фага. [c.79]

    В настоящее время наиболее вероятной представляется такая последовательность событий, ведущих к включению вирус-специфической ДНК ретровирусов в клеточную хромосому (рис. 161). После образования кольцевой молекулы в месте стыка двух LTR возникает короткий несовершенный инвертированный повтор. Этот повтор выполняет функцию att, т. е. специфического участка интеграции. Участок att узнается вирус-специфическим с рментом, обладающим эндонуклеазной активностью — одним из продуктов гена poU который попадает в клетку из заражающей вирусной частицы. Фермент вносит в обе цепочки молекулы вирус-специфической ДНК разрывы на расстоянии 4 нуклеотидов друг от друга. Этот же фермент вносит ступенчатый разрыв (на расстоянии 4—6 нуклеотидов) и в клеточную ДНК- Положение разрыва в клеточной ДНК не фиксировано. Далее происходит интеграция вирусной ДНК в хозяйскую хромосому. Предполагают, что механизм интеграции напоминает тот, который реализуется в фаговых системах, прежде всего у фага Ми (см. раздел 1 этой главы), т. е. разрывы цепей ДНК и воссоединение гетерологичных нуклеотидных последовательностей осуществляет один и тот же фермент — особая топоизомераза (интеграза). Процессы типа репарационных (застраивание брешей и удаление одноцепочечных хвостов ) приводит к двум последствиям во- [c.312]

    Явление неспецифической трансдукции можно представить на следующем примере. Если инфицировать фагом Р-22 штамм-донор S. typhimurium, обладающий определенными признаками, а затем подействовать полученным лизатом на лизогенный для этого фага штамм-реципиент той же бактерии, не имеющий этих признаков, то среди клеток реципиента обнаруживаются особи, обладающие одним из признаков донора. При этом к разным клеткам могут переноситься различные признаки. Считают, что отдельные частицы фага Р-22, вирулентного для донора, размножаясь в клетке, захватывают фрагменты бактериальной ДНК- Попадая в клетки лизогенного для фага Р-22 штамма-реципиента, эти частицы, включаясь в ДНК, переносят признаки, закодированные на таких фрагментах. Включение (интеграция) трансдуцируемого участка ДНК в хромосому реципиента происходит по типу разрыв-воссоединение . Обычно переносимые фрагменты довольно короткие из-за небольших размеров частицы фага. Поэтому, как правило, в клетку-реципиент переносится, в отличие от процесса трансформации, только один признак. Попадание двух частиц фага, несущих различные гены, в одну п ту же клетку мало вероятно. Если же при транс- [c.108]

    Интеграция и индукция фага к (лямбда). Изучение фага лямбда (X), лизогенного для Es heri hia oli К12, позволило выяснить, каким образом профаг связан с бактериальной хромосомой. Лизогенизация бактерий этим фагом может служить примером жизненного цикла умеренно- [c.148]

    В интегрированном состоянии фаговая ДНК реплицируется вместе с бактериальной и подвержена тем же регуляторным воздействиям, что и удвоение бактериальных хромосом. Информация, содержащаяся в фаговой ДНК, в это время не проявляется. Только в результате перехода профага в вегетативное состояние восстанавливается автономия фаговой ДНК и начинается размножение фага. Этот обратный процесс может произойти спонтанно или в результате индукции (например, под действием ультрафиолетового облучения). Исключение фаговой ДНК из бактериальной хромосомы происходит, вероятно, путем обращения процессов, приведших к ее включению, и осуществляется очень точно более 99% фаговых частиц, освобождающихся из лизогенных клеток, идентичны с исходным (инфицирующим) фагом. Это означает, что фаговая ДНК при ее выключении выщепляется точно в том же месте, где происходила интеграция. Только в редких случаях (одном из 1(30 ООО) выключение ДНК фага происходит аномально (см. разд. 15.3.3, где говорится о трансдукции). [c.151]

    Особенно замечателен факт интеграции хромосомы фага в хромосоме хозяина (Львов). ДНК фага копируется при редупликации точно так же, как ДНК клетки-хозяина. При конъюгации мужских и женских клеток профаг подвергается рекомбинации точно так, как будто это собственный генетический локус бактериальной клетки. Это замечательное обстоятельство было открыто Ледербергами на примере фага A. Было точно найдено положение профага (A ) на генетической карте. Оно находится между областями Тгур и Gal, в особенности I-- [c.385]

    Индукция профага и начало вегетативного роста представляют собой обращение процесса интеграции. Инактивация иммунитетного репрессора запускает цепь событий, приводящих к высвобождению фагового генома. Восстановление кольцевого генома вегетативного фага X проходит через те же стадии, которые изображены на фиг. 171, но в обратном порядке. Белок гена int также участвует в обращении процесса интеграции. Кроме него для высвобождения профага из хромосомы лизогенной бактерии требуется еще один, так называемый белок выщепления (ex ision protein), кодируемый геном xis. [c.346]


Смотреть страницы где упоминается термин Интеграция фагов: [c.459]    [c.106]    [c.110]    [c.283]    [c.283]    [c.284]    [c.285]    [c.289]    [c.312]    [c.230]    [c.283]    [c.283]    [c.284]    [c.285]    [c.289]    [c.74]    [c.24]    [c.10]    [c.241]    [c.345]    [c.350]    [c.272]   
Биохимия Т.3 Изд.2 (1985) -- [ c.120 , c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Бактериальная интеграция с фагами

ДНК фага интеграция с хозяйским геномом

Интеграция генома фага лямбда



© 2025 chem21.info Реклама на сайте