Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия активации. Некоторые особенности реакций в растворах

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]


    Скорость реакции в растворе, и особенно ионной реакции, зависит от характера растворителя. С точки зрения теории переходного состояния эта зависимость объясняется сольватацией начального и переходного состояний, например если растворитель I сольватирует переходное состояние лучше, чем растворитель II, то во втором случае реакция характеризуется меньшей энергией активации, и поэтому процесс протекает быстрее. Конечно, энтропия активации может изменить конечный результат, но обычно порядок реакционной способности не меняется по этой причине. Поэтому не вызывает удивления обнаружение иногда огромной разницы скоростей реакций в двух различных растворителях. Один и тот же растворитель при различных температурах представляет собой фактически две различные среды, например тетрагидрофуран при +25 и —70° имеет различные плотность, вязкость, диэлектрическую проницаемость и т. д. Можно сказать, что только количество вещества в сосуде остается тем же самым, но содержимое различно при различных температурах. Поэтому возможно, что потенциальный барьер реакции выше при 25 и существенно ниже при —60°, и по мере того, как температура снижается, реакция ускоряется. Оказывается, что такое объяснение неверно для отрицательной энергии активации, наблюдаемой при росте живущего Ыа-полистирола, тем не менее такое явление может встречаться в некоторых системах. [c.422]

    Энтропия активации. Некоторые особенности реакций в растворах. Уравнение (XVIII. 17) раскрывает смысл предъэкспоненциального множителя в уравнении Аррениуса и стерического фактора теории активных столкновений. Применим уравнение (IX. 10) К = [c.248]

    В терминах диаграммы переходного состояния (рис. 18) энтропию активации можно рассматривать как меру ширины участка энергетической седловины, через которую реагирующие молекулы переходят при достижении активированного состояния. Энтальпия активации является мерой высоты энергетического барьера, который должны преодолеть реагирующие молекулы, в то время как энтропия активации является мерой того, сколько молекул, достигших этой энергии, фактически реагируют. Энтропия активации отра-я ает стерические и ориентационные требования, энтропию разбавления, концентрационные эффекты (зависящие от выбора некоторого стандартного состояния, в котором выражаются равновесные константы и константы скорости) и эффекты растворителя. При эквивалентности остальных особенностей мономолекз лярные реакции будут иметь энтронии активации, близкие к нулю, поскольку для таких реакций обычно не существует концентрационных или ориентационных требований. Бимолекулярные реакции, которые описываются константами скоростей с размерностями, содержащими л/моль, будут иметь отрицательную энтропию активации в результате объединения двух молекул реагентов, находящихся в концентрациях 1 моль/л, в активированный комплекс и, вероятно, должны иметь еще большие отрицательные энтропии в результате стерических и ориентационных требований, включающих потерю поступательных и вращательных степеней свободы в переходном состоянии. Энтропия равновесной гидратации альдегида, которую можно рассматривать как модель взаимодействия воды и карбонильного соединения с образованием переходного состояния, составляет около —18 энтр. ед. (—75,6 Д/к/моль-К). Это заметно более отрицательная величина, чем энтропия, равная —8 энтр. ед. (—31,6 Дж/моль-К), которая требовалась бы для ассоциации молекул реагента в стандартном молярном растворе. [c.448]



Смотреть страницы где упоминается термин Энтропия активации. Некоторые особенности реакций в растворах: [c.248]    [c.22]   
Смотреть главы в:

Краткий курс физической химии -> Энтропия активации. Некоторые особенности реакций в растворах

Краткий курс физической химии Издание 2 -> Энтропия активации. Некоторые особенности реакций в растворах




ПОИСК





Смотрите так же термины и статьи:

Активация в растворах

Активация реакцйи

Реакции в растворах

Энтропия активации

Энтропия растворов



© 2025 chem21.info Реклама на сайте