Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы снижение энергии активации

    Влияние катализатора на снижение энергии активации процесса можно проиллюстрировать следующими данными для реакции распада иодида водорода  [c.205]

    В табл. XII, 1 дана сводка сравнительных данных о кинетике реакций, ускоряемых молекулярным иодом. Механизм этих реакций сходен с механизмом распада диэтилового эфира. Характерным во всех случаях является изменение направления процесса в присутствии катализатора. Если ограничиться рассмотрением данных для распада трех простых эфиров, то бросается в глаза следующая закономерность для некаталитической реакции энергия активации увеличивается с усложнением молекулы, для каталитической — уменьшается. Ускорение, как видно из двух последних столбцов таблицы, обусловлено в основном снижением энергии активации в присутствии катализатора. Предэкспоненты увеличиваются не более чем в 70 раз этот эффект, по-видимому, также усиливается с усложнением молекулы распадающегося вещества. [c.276]


    В соответствии с теорией переходного состояния катализатор открывает новый путь реакции и снижает потенциальный энергетический барьер, который реагенты должны преодолеть, чтобы образовался целевой продукт. В главе И отмечалось, что этому уменьшению энергии соответствует такое же снижение энергии активации реакции, что, в свою очередь, приводит к увеличению ее скорости. Например, из табл. 3 (см. стр. 47) следует, что, если энергия активации реакции, протекающей при 0° С, уменьшается с 70 до 40 шл, то скорость процесса повышается примерно в 10 раз. Указанное снижение энергетического барьера показано на рис. XIV- . [c.410]

Рис. 48. Активность катализатора как функция снижения энергии активации. Рис. 48. <a href="/info/6066">Активность катализатора</a> как функция снижения энергии активации.
    В табл. 55 приведены примеры снижения энергии активации катализаторами в некоторых реакциях. [c.493]

    Снижение энергии активации в присутствии катализатора объясняется тем, что элементарная реакция становится сложной, причем энергия активации любой стадии каталитической реакции меньше энергии активации некаталитической реакции (рис. 4.1), или же тем, что сложная реакция в присутствии катализатора протекает по другому пути. [c.134]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]


    Следует отметить, что воздействие твердого катализатора не всегда ограничивается снижением энергии активации Е превращения  [c.417]

    Скорость процесса. Даже при сравнительно высоких температурах энергия активации молекул азота велика и процесс синтеза аммиака в гомогенной газовой фазе практически неосуществим. Для снижения энергии активации используются катализаторы, позволяющие значительно уменьшить температуру процесса. [c.198]

    Как это видно из формул (1.1) и (1.2), ускорение химической реакции в принципе может быть достигнуто путем либо снижения величины Е, либо увеличения AS. Каталитическое ускорение реакций идет, видимо, большей частью по пути снижения Е. Снижение энергии активации под действием катализатора в общем случае является следствием образования иных промежуточных соединений и активированных комплексов и соответственно изменения формы поверхности потенциальной энергии, благодаря чему открывается новый путь реакции, проходящий через перевалы меньшей высоты. [c.11]

    Скорость каждой стадии в реакциях кислотно-основного катализа вследствие снижения энергии активации значительно выше, чем у всего процесса в целом, когда тот протекает без катализатора. [c.34]

    Таким образом, и в гетерогенном катализе ускоряющее действие катализатора связано с тем, что реагирующие вещества образуют промежуточные соединения, что приводит к снижению энергии активации. [c.125]

    Малые нестехиометрические количества катализаторов могут на много порядков увеличить скорость химической реакции. Это обусловлено значительным снижением энергии активации, в результате чего резко возрастает концентрация активированных комплексов. Действительно, пусть скорости реакции без катализатора Го и с катализатором Гх при V г = 1 равны соответственно [c.618]

    Катализаторы, как указано выше, ускоряют реакции вследствие снижения энергии активации иногда в присутствии катализатора уменьшается предэкспоненциальный коэффициент /со в уравнении Аррениуса (111.39), как правило, применение катализатора вызывает уменьшение порядка реакции. [c.84]

    Ускорение реакции в присутствии катализатора достигается снижением энергии активации вследствие образования иных промежуточных соединений и активных комплексов. При использовании катализатора [К] та же реакция может протекать но следующей схеме  [c.62]

    На рис. 17 представлено изменение энергии реагирующей системы в ходе реакции без катализатора и в присутствии катализатора. При снижении энергии активации Е скорость реакции возрастает в соответствии с уравнением Аррениуса (IV. 27) [c.105]

    Мерой каталитической активности может служить скорость протекания реакции в исследуемом направлении в присутствии катализатора. Активность можно выражать так же снижением энергии активации при участии катализатора или отношением константы скорости данной реакции в присутствии катализатора к константе скорости этой же реакции без него [см. уравнения (П.7), (П. 8)]. [c.281]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    В присутствии катализатора образуют промежуточные продукты реакции, в силу чего процесс может протекать при более низкой энергии активации. Причины снижения энергии активации при каталитических процессах во многом еще остаются невыясненными. Опыт показывает, что для разложения пероксида водорода на во- [c.162]

    В-третьих, для быстрого протекания каталитических реакций нужно, чтобы катализатор уменьшал энергию активации реакции. Это особенно важно для гомолитических (окислительно-восстановительных) реакций, в которых роль катализатора заключается главным образом в снижении энергии активации при образовании радикалов с разрывом электронной пары. Такими катализаторами будут вещества, имеющие свободные валентности и, следовательно, являющиеся проводниками тока (металлы, полупроводники). Небольшие добавки, повышающие радикальный характер катализатора, будут облегчать переход электронов с катализатора на реагирующее вещество и понижать энергию активации при образовании радикалов на поверхности катализатора. Теоретические основы для выбора втих добавок дает электронная теория. [c.462]


    Введение на поверхность катализатора поливалентных катионов, обладающих сильным поляризующим действием, стабилизирует ОН-группы и делает их более устойчивыми к термообработке. Поэтому катионные формы более активны, чем декатионированные, и промотируются водой в более жестких условиях. Наличие в структуре цеолита поливалентных катионов влияет на каталитические свойства протонизированных ОН-групп, чем объясняется некоторое снижение энергии активации. [c.59]

    Любой катализатор активно взаимодействует с исходными реагентами, но его участие в процессе ограничивается только начальными стадиями превращений. В последующих стадиях он полностью регенерируется и может вновь взаимодействовать с молекулами реагирующих веществ. Этим и объясняется, что небольшого количества катализатора достаточно для получения очень больших количеств конечного продукта реакции. Факт снижения энергии активации химической реакции за счет образования промежуточных систем с участием катализатора является несомненным. Однако характер самого взаимодействия с катализатором может быть самым разнообразным. [c.214]

    В опыте Б мы имеем дело с гетерогенным катализом. В данном случае молекулы перекиси водорода, адсорбируясь на катализаторе, в силу снижения энергии активации значительно быстрее, чем без катализатора, разлагаются на молекулы воды и молекулы кислорода. [c.83]

    Каталитическое действие комплексных катализаторов обусловлено включением в координационную сферу молекул реагентов с вытеснением менее прочно связанных лигандов. Каталитическая реакция облегчается взаимной ориентацией реагентов, их поляризацией в поле центрального атома, облегчения электронных переходов вследствие участия в них центрального атома, снижения энергии активации и компенсации энергии разрыва одних связей одновременным образованием других. [c.361]

    При кислотно-основном катализе мелсду катализатором (кислота или основание) и субстратом протекает протолитическая реакция. Протон переносится от катализатора (кислоты) к субстрату с последующей его депротонизацией. Роль кислоты заключается в создании протонизированных частиц реагирующего вещества. Будучи сильным акцептором электронной пары, протон может вызывать перераспределение энергии и разрыхление связей, повышая реакционную способность молекулы субстрата, что проявляется в снижении энергии активации. [c.290]

    Таким образом, механизм гомогенного катализа в растворах возможен на основе как молекулярных, так и ионных промежуточных соединений. Большое значение имеет комплексообра-зование в водных и неводных растворах. Снижение энергии активации объясняется тем, что образование связи при взаимодействии с катализатором уменьшает энергии связи соседних атомов, облегчает их разрыв и образование переходного состояния. Кроме того, ориентирующее действие катализатора способствует выполнению требования строгой координации структуры и движений в переходном состоянии, что снижает энтропию активации. [c.291]

    Скорость химической реакции при постоянной температуре зависит от величины энергии активации. Чем пиже энергия активации, тем большее число молекул реагирующих веществ находится в активном состоянии ж тем выше скорость реакции. Для ускорения [ еакции (без иЗхменения температуры) необходимо снизить эне].1гию активации, что и происходит в рез льтате действия катализатора. Снижение энергии активации в присутствии катализатора объясняется тем, что катализат( р направляет реакцию по иному пути, состоящему из нескольких стадий, каждая из которых отличается более низким значением энергии активации, чем векаталитическая реакция. Взаимодействие двух веществ А и В с образованием третьего вещества С [c.237]

    Е. Е. Шпитальским и Н. И, Кобозевым [3]. Амины образуют с реагирующими сераорганическими продуктами ассоциаты, представляющие собой лабильные промежуточные соедннения, распадающиеся затем с регенера-пней катализатора. Снижение энергии активации при катализе объясняется тем, что образование связи при присоединении катализатора уменьшает энергию связи соседних атомов, т, е. облегчает разрыв соседней связи. В результате создаются более благоприятные условия для взаимодействия сераорганических соединений с металлами и образования сульфидов металлов. [c.523]

    Чем выше температура, тем ниже значение аравн-Исследование кинетики реакции при 240 ат на катализаторе, приводящем к снижению энергии активации до 20 ккал, дало результаты, представленные на рис. 1Х-76. Превращению подвергалась стехиометрическая смесь исходных веществ (ларциальныа [c.425]

    Окисление коксовых отложений на поверхности оксидов железа протекает по стадийному механизму. При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору [3.33]. Повышение энергии связи кислорода в этом случае должно способствовать снижению энергии активации окисления углерода и ускорению процесса регенерации. Кинетические кривые выгорания углеродистых отложений при различных температурах для за-углероженного оксида железа (П1) существенно различаются, соответственно будет различаться и фазовый состав образцов в процессе выгорания отложений. [c.69]

    Энергия активации горения электродного угля силь по уменьшается с ростом температуры. Если в области низких температур (около 500 С) она составляет примерно 104.75 кДж/моль, то для той же скорости газового потока (0.06 м/сек) она снижается до 37.7 и даже до 12.57 кДж/ моль при 800 С. Авторы [3.45] также считают, что наблюдаемое снижение энергии активации выгорания коксовых отложений с поверхности алюмосиликатных катализаторов крекинга при повышении температуры вызвано диффузионными ограт(чеииями и поэтому ие яи.чяется истинным снижением энергии активации. Для области высоких температур кажущаяся энергия активации равна [3.44-3.47]  [c.74]

    Во всех этих процессах, как и в рассмотренных выше, роль катализатора формально сводится к снижению энергии активации и, следовательно, к ускорению реакции. Кроме того, участие катализатора в процессе приводит к усложнению кинетического закона протекания реакции и появлению новых, не известных в не1 алитической кинетике кинетических уравнений. [c.276]

    На рнс. 2.17 схематически показано изменение энергии реакционной системы при бескаталитическом (кривые 1 — а — 2) и каталитическом путях реакции. Снижение энергии активации в присутствии катализаторов Д кат будет тем значительнее, чем активнее катализатор. Так, энергия активации реакции 2Н1 = Нз + Ь снижается при введении Аи со 184 до 105 кДж, а в присутствии Р1 — до 69 кДж. [c.224]

    Кроме терхмнческого, фотохимического и химического иницииро-нания существует каталитический (или термокаталитический) способ ироведения процесса, когда используют гетерогенные катализаторы (активированный уголь и др.). В их присутствии происходит снижение энергии активации, и хлорирование протекает liipn температуре, на 100—150 °С более низкой, чем при термическом процессе. Однако механизм действия этих катализаторов до сих лор неясен. [c.106]

    Одновременно со снижением энергии активации во многих случаях происходит уменьшение порядка реакции. Так, гомогенное некаталитическое окисление сернистого ангидрида происходит по реакции третьего порядка (п = 3) 2SO2-Ь О2 = 250з. При обычных производственных условиях каталитического окисления на малоактивном окисно-железном катализаторе ( =120 — 160 кДж/моль SO2) п — 2,5 на более активном ванадиевом катализаторе п= 1,8, а на самом активном платиновом катализаторе порядок реакции снижается до п = 1 [13]. [c.22]

    Образующийся нафтеновый углеводород иодвергается гидро крекингу с образованием этана и проиана. Давление в реакторе около 65—100 ат. Присутствие катализатора значительно ослабляе-1 реакции уплотнения. О влиянии катализатора свидетельствует значительно сниженная энергия активации, составляюща> - 5 400 кал моль, в то время как для термического процесса, ка1-было отмечено выше, она составляет примерно 50 ООО кал моль В зарубежной промышленности используется несколько различных видов каталитических процессов гидродеалкилирования (хайде ал, дето л, юнидаг и др.). [c.292]

    Очевидно, скорость всего процесса определяется скоростью самого медленного этапа. Здесь различают два случая. Если диффузия исходных и конечных продуктов протекает быстрее, чем сама каталитическая реакция, то скорость процесса целиком зависит от состава и свойств поверхности катализатора. В этом случае говорят, что процесс протекает в кинетической области. Наоборот, если диффузия происходит медленнее, чем завершаются все превращения на поверхности катализатора,то общая скорость реакции будет определяться скоростью диффузии. В этом случае говорят, что процесс протекает в диффу.чионной области. Снижение энергии активации в гетерогенных каталитических реакциях достигается в результате сложных физико-химических процессов, характеризующих стадию активированной адсорбции (хемосорбции). [c.216]

    Катализаторы принимают активное участие в химических процессах, образуя промежуточные соединения или оказывая влияние на разрушение связи между атомами в молекуле. Эти процессы приводят к снижению энергии активации системы, тем самым ускоряют химический процесс. Если предположить, что для реакций в газовой фазе при одинаковых внешних условиях значения пред-экспоненциальных множителей каталитического и некаталитического процессов близки, то скорость каталитической реакции по отношению к скорости Уиск некаталитической реакции будет больше [c.30]

    Примеры каталитического действия в растворах многочисленны, и многие из них находят практическое применение в аналитической химии, например окисление щавелевой кислоты перманганатом гсалия катализатором являются ионы Мп в присутствии Н 2804. Механизм гомогенного катализа может включать в себя как молекулярные, так и ионные промежуточные соединения. Снижение энергии активации вызывается умень-шеп11см энергии связи соседних атомов при взаимодействии с катализатором, что облегчает разрыв связей соседних атомов и их перегруппировку. [c.288]

    Еще М. Фарадей высказал предположение, что каталитическое ускорение реакции достигается благодаря адсорбционному сгущению — повышению концентрации реагирующих веществ в зоне реакции — адсорбционном слое и увеличению благодаря этому числа столкновений. Однако такая трактовка недостаточ1 а, так как она может объяснить ускорение реакции не более чем в 10 10 раз, в то время как, например, реакция На Ь О.. ускоряется даже на фарфоре — сравнительно инертном катализаторе — в 10 -ь 10 раз. Поляни предложил схему адсорбционного механизма каталитического ускорения в результате понижения энергетических барьеров, снижения энергии активации в адсорбционном состоянии, объяснявшую ускорение реакции в 10 10 раз. Длительность взаимного контакта адсорбированных молекул реагирующих веществ, ориентирующее участие катализатора в активном комплексе, разрыхление межатомных связей в адсорбированных молекулах приводят к значительному повышению вероятности переходного состояния и понижению энергии активации реакции, что и псроя дает столь значительное ускорение реакции. Дополняемая современными представлениями об электронных механизмах катализа схема Поляни не утрачивает своего значения и в настоящее время. Сохраняет определенное значение также и упоминавшаяся теория промежуточных соединений, отчетливо сформулированная в конце XIX — начале XX в. П. Са- [c.294]

    Значит, катализатор изменяет путь реакции. Ускорение процесса достигается за счет снижения энергии активации в результате обра- [c.156]

    Снижение энергии активации — не единственная причина ускорения процесса. Имеет значение и увеличенне энтропии активации при образовании активированного комплекса с катализатором. Рост энтропии активации вызывает возрастание скорости взаимодействия. [c.157]

    На рис. 43 и 44 схематически представлено изменение энергии реакционной системы вдоль бескаталитического (тонкие кривые) и каталитического (жи эные кривые) путей реакции — снижение энергии активации в присутствии катализаторов А ка1 (подробнее см. стр. 134)—будет тем значительнее, чем активнее катализатор. Так, энергия активации реакции 2Н1 = На + 2 снижается в присутствии Аи с 44 до 25, а в присутствии — до 14 ккал. [c.133]


Смотреть страницы где упоминается термин Катализаторы снижение энергии активации: [c.122]    [c.105]    [c.223]    [c.117]    [c.296]   
Физическая и коллоидная химия (1964) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Активация катализатора

Энергия активации

Энергия активации катализаторов



© 2025 chem21.info Реклама на сайте