Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение азеотропной перегонки для разделения органических веществ

    Для определения воды, за исключением более старых методов высушивания в сушильном шкафу, наиболее широко применяется метод дистилляции. Этот метод нашел применение в пищевой и нефтеперерабатывающей промышленности для анализа твердых, пастообразных и других относительно малолетучих продуктов. Многие из этих методик приняты во всем мире в качестве стандартных, так как условия перегонки и требования к аппаратуре могут быть описаны достаточно четко и однозначно. Эти методики включают, как правило, отгонку воды с последующим разделением фаз. Обычно используют дистилляцию в присутствии углеводородов или органических галогенидов, которые или образуют азео-тропные смеси с водой с минимальной температурой кипения, или кипят выше 100 °С и поэтому могут служить переносчиками воды. Смесь двух или нескольких компонентов называют азеотропной в том случае, если она кипит при постоянной температуре, соответствующей данному давлению, и в процессе перегонки не изменяет своего состава. Азеотропная смесь ведет себя при перегонке как индивидуальное вещество до тех пор, пока не будет исчерпан один из входящих в ее состав компонентов (в данном случае вода). В большинстве методик анализа, использующих дистилляцию, анализируемый образец диспергируют в относительно большом объеме переносчика воды. Далее нагревают смесь до начала кипения и конденсируют образующийся пар. Конденсат собирают в градуированный приемник (конденсат разделяется на две фазы) и измеряют объем водной фазы. Азеотропные смеси с минимальной температурой кипения позволяют значительно снизить температуру, требуемую для удаления влаги, и, таким образом, осуществить определение воды в более мягких условиях, чем при обычной сушке в сушильном шкафу при атмосферном давлении. Физико-химические принципы дистилляции рассмотрены в работе [89]. [c.236]


    Нефть представляет собой сложную смесь жидких органических веществ, в которой растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе — на Индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения) и некоторые другие методы. Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, адсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки и т. п. При детальном исследовании химического состава нефти практически используются все перечисленные методы. [c.11]

    Иногда выгоднее вести дистилляцию или возгонку вещества не в вакууме, а в токе газа или пара. Если газ совершенно индифферентен, то практически он не оказывает никакого влияния на парциальное давление вещества, подлежащего отгонке. Однако уже в случае водяного пара значительно сказывается его специфическое действие, которое приводит к сильному понижению парциального давления одних веществ, в то время как парциальное давление других веществ (преимущественно не смешивающихся с водой) почти не изменяется, благодаря чему можно достигнуть эффективного разделения веществ. Применение водяного пара по сравнению с другими газами имеет то преимущество, что отгоняющуюся смесь можно легко и полностью сконденсировать и в большинстве случаев можно вновь разделить. В случае необходимости вещество можно выделить из дистиллята методом высаливания или экстракции. В органической химии перегонку с водяным паром часто применяют для разделения веществ. Однако в неорганической химии этот метод имеет небольшое значение летучесть борной кислоты, кремневой кислоты, ВеО, ШОд или МоОд с водяным паром представляет интерес только как особый случай. Поскольку легколетучие неорганические соединения, не разлагающиеся водяным паром, растворяются в воде с образованием азеотропной смеси или определенных соединений, не следует подробно останавливаться на теории и практическом проведении перегонки с водяным паром [535, а, б]. Для перегонки с водяным паром обычно используют простую круглодоннук> колбу с длинным горлом или колбу Кляйзена, в которую вместо капилляра для пропускания воздуха или газа вставляют трубку, подводящую пар. [c.476]


    ПРИМЕНЕНИЕ АЗЕОТРОПНОЙ ПЕРЕГОНКИ ДЛЯ РАЗДЕЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.66]

    На каждый литр углеводородов получалось около 2,4 л водного раствора, содержащего 5—10% кислородсодержащих органических соединений. Уже простой перегонкой удалось выделить основную массу веществ некислотного характера, перешедшую в отгон в остатке сконцентрировались органические кислоты и осталась основная масса воды. Разделение соединений, перешедших в отгон, представило значительные затруднения из-за образования азеотропных смесей спиртов, воды и кетонов. В связи с этим оказалось необходимым применение экстракции растворителями и экстрактивной дестилляции. [c.371]


Смотреть страницы где упоминается термин Применение азеотропной перегонки для разделения органических веществ: [c.67]   
Смотреть главы в:

Препаративная органическая химия -> Применение азеотропной перегонки для разделения органических веществ

Препаративная органическая химия -> Применение азеотропной перегонки для разделения органических веществ

Препаративная органическая химия Издание 2 -> Применение азеотропной перегонки для разделения органических веществ




ПОИСК





Смотрите так же термины и статьи:

Перегонка применение

Разделение веществ

Разделение применение



© 2025 chem21.info Реклама на сайте