Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластичность протеинов

Рис. 8. Изменение пластичности протеинов в связи с изменением концентрации вещества в геле. Рис. 8. <a href="/info/390424">Изменение пластичности</a> протеинов в связи с <a href="/info/24329">изменением концентрации</a> вещества в геле.

    Величина зависит от концентрации вещества в геле она тем больше, чем выше концентрация при этом следует отметить, что изменение пластичности протеинов от концентрации меняется не по прямой, а по некоторой параболе (рис. 8). Это объясняется лиофильностью коллоида большое прибавление протеина в систему протеин - вода изменяет ее так, что количество дисперсионной среды уменьшается, так как час-1Ь ее входит н состав фазы в силу сродства дисперсной фазы — протеина к дисперсионной среде — воде. [c.31]

    Изучение изменений пластичности протеинов — один из наиболее трудных вопросов, так как по В. Оствальду вязкость, а следовательно и пластичность, зависит по крайней мере от десяти причин от 1) концентрации, 2) температуры, 3) степени дисперсности, 4) растворимости, 5) электрического заряда, 6) предшествовавшей тепловой обработки, 7) предшествовавшей механической обработки, 8) присутствия других лиофильных коллоидов, 9) возраста геля и 10) присутствия электролитов и неэлектролитов. [c.32]

    Не менее важное значение для пластмасс на белковой основе имеет осаждение золя протеина коллоидами. Это осаждение обусловливается разноименными зарядами золей. В технике осаждение разноименных коллоидов применяется широко. В производстве пластических масс из казеина оно служит для получения сычужного, особо пластичного казеина. [c.30]

    Среди свойств, присущих белковым веществам, для техники пластических масс особое значение имеет пластичность их гелей. Она определяет пригодность того или иного протеина для пластических масс, она определяет производительность основного оборудования и конечный качественный результат получаемого продукта. Плохая пластичность некоторых протеинов ограничивает выбор их для пластических масс. Недостаточная пластичность некоторых сортов из пригодных протеинов затрудняет процессы пластикации и формования и в конечном счете дает гель или пластик плохого вида, неравномерный своей по внутренней структуре, а отсюда и непрочный в силу наличия в нем вредных напряжений, обусловленных неравномерностью распределения дисперсной фазы в дисперсионной среде. [c.30]

    Дегидратация протеинов оказывает значительное влияние на пластичность их. При воздействии на протеин дегидратирующих веществ и изменении заряда, могут оказывать влияние оба фактора совместно, но только на кислой стороне от изоэлектрической точки, так как на щелочной стороне дегидратация встретит противодействие со стороны гидроксил-иона, повышающего гидрофильность протеина. При пластикации казеина эти положения нами были проверены. Пользуясь этим, можно изменять пластичность казеинового геля в желаемом направлении. [c.32]


    Рога и копыта состоят не из одного кератина, помимо него в них имеется жир (в количестве до 4%) и некоторые белковые вещества иного состава, чем кератин, обладающие иными свойствами, чем последний. Жир не оказывает вредного влияния на технические свойства рогов и копыт. При переработке их в изделия бывает выгодно пропитывать их жиром дополнительно—это улучшает их пластичность. Совсем по-иному действуют белковые примеси, сопутствующие кератинам. Кератины сами по себе весьма ограниченно гидрофильны, набухаемость их в воде очень слабая и ферменты на них не действуют. Сопутствующие же им протеины и гидрофильны и перевариваются ферментами — пепсином и трипсином. При переработке рогов стремятся удалить эти вредные примеси путем длительного вымачивания в теплой воде в противном случае они вызывают образования трещин в роговой пластине вдоль ее слоев. Сам кератин рога является не абсолютно стойким веществом. Помимо легкого распада цистина с выделением сероводорода долгое кипячение в воде, длительное пребывание во влажном состоянии на воздухе ведет к изменению кератина. В первом случае он в некоторой степени гидролизуется, во втором— кислород воздуха, изменяя кератин, делает его доступным действию ферментов. В производстве это нужно учитывать и охранять влажный рог от окисления. [c.37]

    Лучшим методом определения пластичности в технике изготовления казеина является непосредственное опробование пластических свойств казеина на шнековых прессах, применяемых для получения пластика. Для лабораторных исследований вероятно можно приспособить метод Кемфа. Затруднения заключается в высокой концентрации протеинов в пластических массах, следовательно в крайне высокой вязкости. [c.32]

    Нам удалось приготовить белкоэое вещество из семян люпина методом ферментативной коагуляции, отличавшееся чистым белым цветом и прекрасной плa тичнo JfJЮ. Однако эта пластичность быстро падала при тепловой денатурации протеина и сама пластическая масса не обладала должной прочностью. [c.109]

    В монослоях встречаются все градации вязкости, пластичности и упругости формы, начиная с вязкости воды с чистой поверхностью, через малую и умеренную нормальную вязкость, аномальную вязкость, и кончая твёрдыми плёнками, обладающими настолько высокой прочностью, что они способны образовывать мост через широкое пространство, выдерживающий давление до нескольких дин с одной стороны при полном отсутствии давления с другой. Вязкость, естественно, возрастает с увеличением числа молекул плёнки на единицу площади, но также испытывает не вполне выясненную ещё зависимость от ориентации и сил притяжения между молекулами плёнки. При сжатии плёнки до одного из состояний с более плотной упаковкой происходит не только повышение вязкости, но, как правило, также и отклонение от простого закона вязкого течения, т. е. вязкость становится аномальной и растёт с уменьшением градиента скорости. Относительно конденсированных плёнок длинноцепочечных спиртов, довольно подробно изученных Фортом и Гаркинсом давно известно, что их кривые зависимости поверхностного давления от площади состоят из двух ветвей с изломом между ними (рис. 15, кривая ИП, выше которого цепи плотно упакованы. Ниже этой точки излома их вязкость нормальна, а выше — аномальна. Жоли обнаружил, что газообразные плёнки дают заметное повышение вязкости при площадях, приблизительно равных площади, занимаемой лежачей молекулой. Уже давно известно, что в большинстве газообразных плёнок при этой площади происходит некоторое уменьшение сжимаемости, несомненно обусловленное тем, что молекулы начинают отклоняться от горизонтального положения за недостатком площади для лежачего положения. В случае быстрого нанесения плёнок протеинов при значительном и возрастающем давлении, вязкость часто повышается с течением времени при повышении давления происходит весьма заметное увеличение вяJ- [c.501]

    Обсуждая проблему тиксотропии, Фрейндлих [64] настоятельно указывал на необходимость признания дальнего взаимодействия коллоидных частиц в гелях. Общность в строении тактоидов, тиксотропных гелей, кристаллов протеинов и коацерватов усмотрел Ленгмюр [65], объяснявший образование коллоидных структур борьбой сил электростатического отталкивания и теплового движения. Левин [66] предполагал, что при желатинировании золей коллоидные частицы могут фиксироваться во вторичном потенциальном минимуме. Однако это предположение не было им развито и подтверждено. Представление об одновременно действующих силах электростатического отталкивания и вандерваальсовых силах притяжения было применено для объяснения упруго-пластичных свойств гелей и паст [67]. Фукс [38] считал, что частицы в коллоидных структурах могут находиться на больших расстояниях (- 0,1л/сл) при изменении этих расстояний нарушаются механические свойства структуры. Прочность последних возрастает с уменьшением гоЛщины жидких прослоек [69]. [c.16]


Смотреть страницы где упоминается термин Пластичность протеинов: [c.30]    [c.16]    [c.99]   
Смотреть главы в:

Технология белковых пластических масс -> Пластичность протеинов




ПОИСК





Смотрите так же термины и статьи:

Пластичность

Протеины



© 2025 chem21.info Реклама на сайте