Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Малые транспорт через мембрану

    Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или фуппы родственных молекул. В клетках существуют также способы пфеноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5). [c.379]


    Возникновение АрН на мембране может служить основой для вторичного активного транспорта и органических веществ. В плазмалемме обнаружены белки-переносчики сахаров, аминокислот, которые приобретают высокое сродство к субстрату только в условиях протонирования. Поэтому когда Н+-насос начинает работать и на наружной поверхности плазмалеммы увеличивается концентрация ионов Н+, то эти белки-перено-счики протонируются и связывают сахара (аминокислоты). При переносе молекул сахара на внутреннюю сторону мембраны, где ионов Н+ очень мало, Н+ и сахара освобождаются, причем сахара поступают в цитоплазму, а ионы Н+ снова выкачиваются из клетки Н+-насосом, По существу, Н+ играет в этом процессе роль катализатора. Точно так же в симпорте с ионами Н+ в клетку могут поступать и анионы. Кроме того, анионы слабых органических кислот при понижении pH на поверхности плазмалеммы могут проникать через мембрану в виде незаряженных молекул (если они растворимы в липидной фазе), так как с повышением кислотности снижается их диссоциация. [c.263]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]


    Как следует из довольно высоких величин отношения для всех стероидов, проницаемость через мембраны ПОЭМА определяется главным образом прониканием через поры . Высокие значения Ко согласуются с предложенной моделью. Согласно этой модели и данным, полученным для мембран из ПОЭМА, распределением гидрофобных субстратов управляют в основном домены типа А. Вещества, растворенные в этих доменах, дают лишь малый вклад в общую проницаемость. Транспорт растворенных веществ протекает, как правило, по механизму проникания через поры . [c.343]

    Несмотря на то что каждому типу мембран присущи определенные липидные и белковые компоненты, основные структурные и функциональные особенности, обсуждаемые в этой главе, характерны как для внутриклеточных, так и для плазматических мембран. Прежде всего нам хотелось бы рассмотреть структуру и организацию главных компонентов всех биологических мембран - липидов, белков и углеводов. Затем мы обсудим механизмы, используемые клетками для транспорта малых молекул через плазматическую мембрану, а также способы поглощения и выделения клетками макромолекул и крупных частиц. В последующих главах будут проанализированы некоторые дополнительные функции плазматической мембраны роль в клеточной адгезии (гл. 14) и в сигнальных функциях (гл. 12). [c.349]

    По сравнению с изотермическими мембранными процессами поляризационным явлениям в неизотермических процессах до сих пор уделялось мало внимания. В неизотермических мембранных процессах, таких, как мембранная дистилляция и термоосмос, транспорт через мембрану осуществляется, если температуры с обеих сторон мембраны различаются. В обоих указанных процессах наблюдается температурная поляризация, хотя они сильно отличаются друг от друга по структуре использующихся мембран, принципам разделения и областям практического использования. Подобно концентрационной поляризации в баромембранных процессах, сопряжение теплопереноса и массопереноса приводит к температурной поляризации. [c.416]

    В настоящее время мы уже обладаем довольно солидным запасом зпа-ний о химической структуре, процессах биосинтеза я распада ФЛ в клетках нервной ткани, их распределении в различных структурах, интенсивности их обмена как в нормальных, так и в патологических условиях. Но и сейчас мы еще мало можем сказать о конкретной роли ФЛ в возникновении и проведении нервного импульса, в изменениях уровня функциональной активности нервных клеток, о механизмах их участия в транспорте веществ через биологические мембраны. [c.73]

    Поскольку большая часть присутствующей в клетке воды находится в вакуоли, мы начнем анализ проблемы транспорта воды с рассмотрения того пути, который молекуле воды требуется преодолеть для того, чтобы попасть в вакуоль клетки. Вода должна пройти сквозь две мембраны (плазмалемму и тонопласт) и через лежащую между ними цитоплазму. Мы мало знаем о различиях в способности этих трех структур пропускать воду, а потому обычно все три структуры рассматриваются совместно как единый мембранный барьер. [c.170]

    Однако даже в сердечной мышце, где митохондрий особенно много, митохондриальные мембраны по объему занимают малую часть клетки. Поэтому необходимы дальнейшие исследования, чтобы решить, какой путь транспорта кислорода является главным по мембранам или через цитозоль. [c.207]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]


    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Слои эпителиальных клеток покрывают поверхность тела и выстилают все его полости. Несмотря на значительные биохимические различия, у этих слоев есть по крайней мере одна общая функция они служат высокоселективными барьерами, разделяющими очень различные по химическому составу внутренние и наружные жидкости. Ведущую роль в поддержании функции эпителиев как селективных барьеров играют плотные контакты. Например, эпителиальные клетки, выстилающие тонкий кишечник, должны удерживать большую часть его содержимого в просвете кишки и в то же время должны перекачивать оттуда во внеклеточную тканевую жидкость определенные питательные вещества, которые затем всасываются в кровь. Такой перенос осуществляют две группы специализированных транспортных белков одна из них находится на апикальной поверхности эпителиальных клеток (эта поверхность обращена к просвету кишечника) и транспортирует в клетку избранные молекулы, а другая-на базальной и латеральной (или, как говорят, базолате-ральной) поверхности и вновь откачивает эти молекулы из клетки с другой стороны (рис. 12-24). Очевидно, что для поддержания направленного транспорта апикальные насосы не должны диффундировать (в плазматической мембране) на базолатеральную поверхность и наоборот. Кроме того, необходимо предотвратить обратную утечку транспортируемых молекул в полость кишечника. Плотные контакты обеспечивают оба этих условия. Во-первых, они служат препятствием для диффузии молекул в липидном бислое плазматической мембраны. Во-вторых, они так герметично соединяют соседние клетки, что через образующийся непрерывный клеточный слой не проникают даже малые молекулы. [c.213]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Удаление малых органических молекул. Эту операцию можно проводить с помошью мембран для обратного осмоса или в некото-рь х случаях с юмощью мембрая для ультрафильтрации. В любом случае основной тип транспорта через мембрану ускоряется переносом или просто диффузией. [c.278]

    Очень мало известно о механизме биологического действия гормонов, хотя, естественно, он будет различным у разных гормонов. Многие гормоны, в частности соединения пептиднобелковой природы, оказывают влияние на проницаемость клеточных и субклеточных мембран, по всей вероятности, путем воздействия на определенные ферменты. Таким путем они регулируют различные процессы в живой клетке. Интересно, что при этом гормон не обязательно должен входить в клетку, он может прикрепляться к определенной ферментной системе, расположенной на клеточной поверхности, и посредством кооперативных эффектов вызывать какие-либо изменения внутри клетки (такой механизм иногда называют кнопочным ). Таким путем может регулироваться транспорт ионов различных металлов и ряда веществ (например, сахаров) через мембраны и оболочки. [c.105]

    Наши первые исследования белкового состава миелина были посвящены изучению микрогетерогенности белков, извлеченных последовательно неионным детергентом — тритоном Х-100 и анионным детергентом — додецилсульфатом натрия. Приступая к выполнению этих исследований, мы руководствовались следующими соображениями. До последнего времени нейрохимики изучали преимущественно растворимые белки нервной ткани. Очень мало работ было посвящено нерастворимым белкам различных структур нервной ткани, в том числе и такой специфической мембранной структуре, какой является миелин. Между тем роль нерастворимых белков в процессах внутриклеточного обмена веществ и в транспорте ионов и метаболитов через мембраны не менее важна для функций клетки, чем роль растворимых белков гиалоплазмы. [c.24]

    Устройство мембраны, показанное на рис. 10.2, таково, что белки как бы плавают в липидном море . Их молекулы погружены с двух сторон мембраны на разную глубину в двойной слой подвижных углеводородных хвостов липидов. Имеются белки, проходящие через всю мембрану. Значительная часть поверхности мембраны свободна от белков так, белки занимают 70 7о поверхности мембраны эритроцита и 80 7о поверхности мембраны мпкросомы. Транспорт малых ионов и молекул происходит по каналам в мембранах. В устройстве и функционировании каналов особенно существенна роль белков. Природа каналов— важная проблема физики мембран (см. 11.4). [c.338]

Рис. 10.12. Механизмы перспоса попов через мембрану а — подвижные переносчики с малой каруселью (переносчик Т заключен в мембране, а комплексообразование пронсходнт на границах раздела мембрана — раствор) 6 — нодви кпые переносчики с большой каруселью (переносчик Т имеется и в мембране, и в растворе, комплексообразование происходит в растворе) в — коллективный транспорт (ион А переносится несколькими частицами переносчика Т) г — эстафетный транспорт й — прямое прохождение Рис. 10.12. Механизмы перспоса попов <a href="/info/152902">через мембрану</a> а — <a href="/info/510364">подвижные переносчики</a> с малой каруселью (переносчик Т заключен в мембране, а комплексообразование пронсходнт на <a href="/info/68165">границах раздела</a> мембрана — раствор) 6 — нодви кпые переносчики с большой каруселью (переносчик Т имеется и в мембране, и в растворе, комплексообразование происходит в растворе) в — коллективный транспорт (ион А переносится <a href="/info/1474179">несколькими частицами</a> переносчика Т) г — <a href="/info/1352038">эстафетный транспорт</a> й — прямое прохождение
    Функции липидной части мембраны. Липиды, входящие в состав мембран, служат растворителем для их интегральных белков, барьером проницаемости для полярных молекул. Гидрофобные жирорастворимые вещества легко проходят через липидный бислой. Малые молекулы газов — кислород, двуокись углерода и азот легко диффундируют через гидрофобную область мембраны. Липиды мембраны обеспечивают ее жидкостность или текучесть. Жесткость определяется степенью насыщенности жирных кислот в фосфолипидах и наличием холестерина. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот и чем больше содержание холестерина. От нее зависят такие функции мембраны, как транспорт веществ через мембрану, взаимодействие рецепторов с лигандами. Основой старения и атеросклероза является понижение жидкостности мембран. [c.101]

    Простая диффузия осуществляется за счет теплового движения частиц в направлении градиента их концентраций, и ее скорость зависит от величины этого градиента, коэффициента диффузии, температуры, значения коэффициента распределения. Такой перенос веществ осуществляется через поры мембран в белоксодержащих участках, которые проницаемы для малых молекул (Н2О, мочевина, СО2, О2), или через липидный слой мембраны, служащий растворителем для гидрофобных веществ (простые и сложные эфиры, высшие спирты, жирные кислоты и др.). Перенос вещества с помощью простой диффузии прекращается, когда градиент концентрации становится равным нулю. Однако большинство веществ проникает через биомембраны с помощью специфических транспортных систем. Простейшим процессом такого вида транспорта является облегченная диффузия. [c.444]

    В районе верхушечных клеток базальная мембрана, как правило, обладает постоянной толщиной ( 1 мкм), но внешне она неоднородна (рис. 16.5). На поперечных срезах электроноплотные полосы толщиной 40-50 нм чередуются с более широкими и светлыми зонами с периодом около 200 нм (рис. 16.6). На тангенциальных срезах электроноплотные области образуют регулярную структуру из полигональных ячеек с длиной стороны примерно 200 нм. Исходя из внешнего вида при разной ориентации срезов, мы заключили, что электроноплотное вещество организовано в структуру наподобие пчелиных сот, ячейки которых перпендикулярны базальным поверхностям верхушечных клеток. При просмотре под большим увеличением (рис. 16.6-16.8) видно, что электроноплотные области состоят из сконцентрированных ферритиновых мицелл, заключенных в вещество средней электронной плотности (по всей вероятности, белка апоферритина). Области базальной мембраны с малой электронной плотностью состоят из очень тонкого, возможно, фибриллярного материала с диаметром менее 3 нм. Никакой заметной связи между этими областями и какими-либо видимыми структурами в эндотелиальных или верхушечных клетках нет. Наши электронные микрофотографии не позволяют сделать выбор между возможностью существования предобразованных каналов или наличием мест предпочтительного связывания ферритина внутри базальной мембраны. В литературе мы не встречали никаких публикаций, описывающих подобным образом организованные субструктуры в базальных слоях других организмов. Полученные нами данные позволяют только строить предположения о том, для чего существует специализированный механизм для концентрирования ферритина или для транспорта ферритина через базальную мембрану. [c.104]

    Еще одно явление, характерное для транспорта в жидкой мембране, — это концентрационная поляризация. Оно зависит от скорости потока через мембрану и от гидродинамических условий (коэффициентов массопереноса) до и после мембраны. Концентрационная поляризация может влиять на мембранный транспорт, и ее необходимо учитывать в уравнениях массопереноса через мембрану. Рассмотрим это на примере сопряженного транспорта нитрат- и хлорид-ионов. Примем, что вклад фиковской диффузии мал по сравнению с транспортом, обусловленным переносчиком, и что все нитрат-ионы переносятся через мембрану в виде комплексов с переносчиком. [c.348]


Смотреть страницы где упоминается термин Малые транспорт через мембрану: [c.83]    [c.481]    [c.379]    [c.220]    [c.201]   
Молекулярная биология клетки Том5 (1987) -- [ c.99 ]




ПОИСК







© 2025 chem21.info Реклама на сайте