Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластические массы свойства

    Последнее десятилетие характеризуется бурным развитием нроизводства хлорпроизводных соединений углеводородов. Объясняется это тем, что хлорпроизводные находят все большее и большее использование в качестве полупродуктов для получения спиртов, органических кислот и других химических продуктов. На их основе в настояш ее время изготовляются пластические массы, искусственное волокно, хладагенты и т. д. В качестве примера можно привести быстрорастущее использование четыреххлористого углерода в производстве нового синтетического волокна энант, разработанного в СССР под руководством акад. А. Н. Несмеянова, обладающего рядом очень ценных свойств. Многие хлорпроизводные имеют и самостоятельное значение как растворители (дихлорэтан, четыреххлористый углерод), средства для борьбы с вредителями сельского хозяйства и т. д. [c.115]


    Наполнители — твердые вещества, которые вводятся для придания или усиления в пластической массе определенных физических свойств прочности, теплостойкости, а также снижения усадки во время отверждения. Одновременно наполнитель увеличивает негорючесть изделий, часто водостойкость улучшает внешний вид и повышает диэлектрические свойства. В качестве наполнителей применяются органические и минеральные соединения. В табл. 14 приведена классификация пластмасс в зависимости от наполнителя. [c.213]

    Ацетилен является исходным сырьем, применяемым 11 синтезе веществ, из которых получают химические золокна, пластические массы и другие важные продукты и материалы. К таким веществам относятся хлористый винил, винилацетат, акрилонитрил, хлоропрен, уксусная кислота и т. д. В связи с большой потребностью в продуктах, получаемых на основе ацетилена, планами развития народного хозяйства предусматривается значительное увеличение производства ацетилена путем переработки природного газа. Лри организации этого производства должна быть обеспечена безопасность и надежность технологического процесса, что имеет важное значение в связи с его спецификой и пзрывчатыми свойствами ацетилена. [c.5]

    ПЛАСТИЧЕСКИЕ МАССЫ Свойства, испытания, примепение [c.528]

    ПЛАСТИЧЕСКИЕ МАССЫ Свойства, испытания, применение [c.527]

    Кремнийорганические стеклотекстолиты используют в электротехнической, авиационной и машиностроительной промышленностях, а также в качестве конструкционных материалов при изготовлении крупногабаритных изделий радиотехнического назначения. Они незаменимы при изготовлении деталей радиоэлектронной аппаратуры. Для этих же целей применяют и другие виды кремнийорганических пластических масс, свойства которых приведены ниже. [c.70]

    Деформируемость пластических масс — свойство, проявляющееся в изменении размеров или формы полимерного образца (или изделия) под действием внешних сил, при нагревании или охлаждении, изменении влажности и других воздействиях, вызывающих изменение относительного положения частиц тела. Деформируемость пластических масс определяется их структурой и физическим состоянием [33, с. 5—10]. [c.72]

    В некоторых нефтехимических синтезах, в частности при получении бутилкаучука, изопрена, термостойких пластических масс,, используют только разветвленные олефины С4—Се. Примеси нормальных олефинов, как правило, ухудшают свойства готового продукта. Например, химическая инертность, высокая термостабильность и низкая электропроводность бутилкаучука достигаются-лишь при отсутствии в мономере (изобутене) примесей н-бутенов. Применяемая в промышленности абсорбция изобутена из фракции олефинов С4 (их содержится 50—60%) серной кислотой не обеспечивает должной чистоты мономера — в нем остается небольшое количество бутена-1, а также меркаптана. Применение адсорбционных методов с использованием цеолитов (главным образом a ) позволило решить эту проблему, в частности выделить-99,9%-ный изобутен. . [c.199]


    Наряду с высокомолекулярными соединениями в состав пластических масс входят различные наполнители, пластифицирующие вещества, красители и пр., причем, в зависимости от вида и содержания этих веществ, свойства материала могут различаться в значительной степени. [c.160]

    Наиболее широко применяются синтетические материалы на органической основе — высокомолекулярные полимерные материалы, молекулы которых имеют гигантские размеры по сравнению с молекулами простых органических веществ. К числу таких материалов относятся многочисленные материалы, разнообразные по свойствам и назначению. Из числа этих материалов в химическом машиностроении широко используются пластические массы, материалы на основе каучуков (натурального и синтетического) и искусственные графито-угольные материалы. [c.388]

    Свойства фаолита. Фаолит — кислотостойкая пластическая масса. Он стоек к действию фосфорной, соляной, серной и даже плавиковой кислот, органических кислот, многих органических жидкостей (бензол, формалин, дихлорэтан), минеральных масел. Свойства фаолита в большой степени зависят от вида асбеста. Так, антофиллитовый асбест придает ему высокую кислотостойкость, низкую адсорбционную способность и малую механическую [c.64]

    В настоящее время в СССР и других странах использование нефти решительно ориентировано на ее глубокую переработку с максимальным получением высококачественных светлых продуктов, например бензина и сырья для производства пластических масс, химических волокон, синтетических каучуков, моющих средств и т. д. Создание процессов глубокой переработки нефти было связано с изучением состава и свойств нефтей, исследованием поведения углеводородов при переработке нефти, каталитических процессов превращения углеводородов и рядом других проблем. Неоценимый вклад в мировую и отечественную науку внесли русские и советские ученые А. М. Бутлеров, Д. И. Менделеев, [c.55]

    Процесс сопровождается выделением воды. Фенолоформальдегидные СМС1ЛЫ обладают замечательным свойством при нагревании они вначале размягчаются, а при дальнейшем нагревании (особенно в присутствии соответствующих катализаторов) затвердевают. Из этих смол готовят ценные пластические массы — фенопласты смолы смешивают с различными наполнителями (древесной мукой, измельченной бумагой, асбестом, графитом И Т. п.), с пластификаторами, красителями, и из полученной массы изготовляют методом горячего прессования различные изделия. В последние годы фенолоформальдегидные смолы нашли новые области ноименения, например, производство строительных деталей из отходов древесины, изготовление оболочковых форм в литейном деле. [c.505]

    Пластические массы органического происхождения. Классификация. Технические наименования и основные свойства (справочный материал), Стандартгиз, 1959, 13 стр. [c.121]

    Ресурсы толуола превышают возможности использования его в качестве растворителя и в нефтехимических синтезах. В то же время пластические массы и сополимеры на основе винилтолуола, получаемого из толуола, по ряду свойств превосходят полимеры и сополимеры стирола, получаемого из дефицитного бензола. [c.107]

    Особенно большое теоретическое и практическое значение имеет свойство некоторых видов каменных углей в определенном температурном интервале переходить в пластическое состояние. При нагревании зерна этих углей покрываются жидкой фазой. Жидкие оболочки соседних зерен склеиваются и образуют непрерывную вязкую пластическую массу, заполненную газообразными и твердыми продуктами термической деструкции углей. Это состояние углей принято называть пластическим. [c.229]

    Наиболее распространенным в СССР и других социалистических странах методом характеристики свойств пластической массы углей является пластометрический метод Сапожникова и Базилевича [12, с. 5], с помощью которого измеряется ширина зоны пластического состояния (толщина пластического слоя). Этот метод дает возможность автоматически записывать изменение объема [c.230]

    Рассматривая свойства угля в пластическом состоянии, необходимо обращать внимание на температурные показатели начала образования пластического состояния и затвердевания пластической массы. На рис. 85 показано относительное положение векторов, изображающих интервалы пластичности [13, с. 58]. Период повышенной текучести самый большой у жирных углей 70—75 °С (рис. 85), (прямые 4 и 6), меньше 35—46 °С у хорошо спекающихся газовых и коксовых углей и самый короткий 21—33 °С у слабоспекающихся углей газовых и отощенных (рис. 85, прямые [c.232]

    В наибольших количествах фенол расходуется в производстве фенолоальдегидных, главным образом, фенолоформальдегидных смол, служаш,их сырьем для изготовления пресс-порошков, разнообразных слоистых пластиков, лаков, клеевых смол [35, с. 262— 345]. Доля их в общем производстве синтетических материалов и пластических масс постоянно уменьшается, но в большинстве отраслей промышленности эти продукты занимают прочные позиции. В США за период с 1960 по 1969 г. выпуск возрос с 290 до 535 тыс. т [26], в 1977 г. он составил 635 тыс. т [9], а к 2000 г. предполагают увеличение их производства до 3 млн. т [3]. Фенолоальдегидные смолы и композиции на их основе обладают рядом важных особенностей по сравнению со многими другими продуктами, а именно большей термостойкостью, хорошими адгезионными и клеющими свойствами при неплохих диэлектрических характеристиках. К тому же они относятся к числу дешевых синтетических смол и широко применяются в машиностроении, электротехнической, строительной промышленности. На их основе готовят клеи и связующие для производства древесно-волокнистых плит, водостойкой фанеры, эффективных абразивных материалов 1 т фенопластов заменяет в изделиях, соответственно, 5 т стали, 4,9 т чугуна или 1,3 т древесины [15]. [c.58]


    Эти материалы часто являются единственно пригодными для решения трудных коррозионных проблем. Фторорганическими пластическими массами, выпускаемыми в Советском Союзе и нашедшими промыигленное применение в химическом машино-стр01 нин, являются фторопласт-4 и фторопласт-3. Физико-мехапическне свойства фторопласта-4 и фторопласта-3 приведены в табл. 52. [c.429]

    Рассмотрим подробнее механизмы образования и регулирования механических свойств твердых материалов на конкретных методах получения таких материалов, как металлы и сплавы, керамика, бетон, пластические массы. [c.386]

    Конструкционный материал химического реактора в миого-продуктовых системах выбирают иа осиоис его коррозионных свойств, реакционных сред д, 1я всех процессов, которые предполагается осуществлять в реакторе. В качестве коиструкцпоп-ных материалов наиболее часто применяют углеродистую сталь нержавеющую сталь Х18Н10Т сталь с эмалевым кислотостойким покрытием сталь, футерованную керамической плиткой титан иногда пластические массы, кислого- и щелочестойкую керамику. В производствах продуктов, в которых лимитируется срдерн апие примесей и требуется высокая чистота продукта (высокочистые вещества, синтетические лекарственные средства), распространены также аппараты пз химически и термически стойкого стекла. [c.22]

    Полимеры и пластмассы на их основе являются ценными заме нителями многих природных материалов (металлов, дерева, кожи клеев и т. п.). Синтетические волокна успешно заменяют натураль иые — шелковые, шерстяные, хло 1чатобумажные. При этом важж подчеркнуть, что по ряду свойств материалы на основе синтетиче ских полимеров часто превосходят природные. Можно получат пластические массы, волокна и другие соединения с кoмплeк ov. заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов. Народнохозяйственные планы нашей страны предусматривают широкое и все увеличивающееся развитие производства синтетических полимеров и разнообразных материалов на их основе .  [c.500]

    В чериячно-лопастных смесителях можно смешивать пластические массы и резины, а также сыпучие и пастообразные материалы. В большинстве случаев эти машины нзготовляют с двумя валами — смесительными органами, конструкция которых зависит от физико-механических свойств смешиваемых материалов. [c.245]

    Настоящий учебник физической химии предназначен для студентов выси]их технических учебных заведений нехимичсских специальностей. При написании этого учебника был использован материал книги автора Курс физической химии , изданной в 1956 г. как учебник для химических вузов. В соответствии с новым назначением книга была значительно сокращена и сун1ественно переработана в текст включена глава Коллоидное состояние , посвященная главным образом лиофобным коллоидам, а также две дополнительные главы Метод меченых атомов и химическое действие излучений и Высокополимеры и пластмассы . В последней из них, в соответствии с основным назначением книги для нехимических втузов, главное внимание было обращено не на процессы получения высокополимеров и пластмасс, а на особенности их внутреннего строения и свойств, наиболее существенные для применения полимерных материалов. По той же причине из всех видов полимерных материалов более подробно рассмотрены различного рода пластические массы. [c.11]

    В последние годы широкое распространение для защиты ме-12ЛЛ0В от коррозии нашли пластические массы, и в особенности композиции для обмазок и лаки на основе продуктов конденсации фурилового спирта — фуриловые смолы. Фуриловые смолы обладают кнслотостойкостью, повышенной щелочестойкостью и хорошими адгезиопными свойствами к металлической поверхности, бетону, керамике и др. [c.408]

    Наибольший интерес в области защиты металлов от коррозии полимерами представляют пластические массы на основе фтороргаиических соединений. Такие пластмассы, как политетрафторэтилен (фторопласт-4) и политрифторхлорэтилен (фторопласт-3), а также ряд сополимеров на основе политетрафторэтилена с другими фторорганнческими полимерами (фтористым винилиденом, гексафторнолипропиленом и др.) обладают рядом столь ценных свойств (исключительно высокая химическая стойкость, высокая теплостойкость и др.), что это делает их непревзойденными материала.мн в антикоррозионной технике. [c.428]

    В качестве конструкционных материалов различного назначения синтетические н ирпродные полимеры могут быть использованы как в чистом виде без каких-либо добавок к ним, так и в составе различных композиций, в которые кроме самих полимеров, игра 0-щих здесь роль связующего материала и называемых смолами, входят другие вещества, придающие полимерным материалам новые свойства. Такими сложными композициями являются различные пластические массы, а также резиновые материалы. [c.378]

    Политетрафторэтилен — твердьи" бесцветный материал, от,дичаю-и нйся искл]очптельной химической стойкостью — на него не действуют ни самые сильные кислоты и щелочи, ии самые сильные окислители, т. е. по своей химической стойкости политетрафторэтилен превосходит золото и платиновые метал.лы. В связи с такими исключительными свойствами он в виде пластической массы под назваинем тефлон или фторопласт применяется для изготовления изделий, иредназначенных для работы н сильно агрессивных средах, а также в качестве электроизоляционного материала. [c.379]

    К порошкообразным наполнителям относятся распространенные деитевые материалы — древесная мука, получаемая тидательным измельчением древесных опилок и стружек, торфяная мука, уголь, сажа, кварцевая мука, песок и другие минеральные наполнители, сообщающие пластическим массам теплостойкость и улучшающие их электроизоляционные свойства. [c.381]

    В пластмассы часто вводятся в небольших количествах и другие добавки ускорители, обеспечивающие отверждение с нужной скоростью при более низкой температуре стабилизаторы, способствующие длительному сохранению пластмассой своих первоначальных свойств смазки, обеспечивающие прессование порообра-зователи — для получения пено-и поропластов светящиеся составы, антисептики — против разрушающего воздействия плесени и пр. Пластические массы используются как конструкционные ма- [c.214]

    Под эффективным использованием нефти понимают и наиболее полное извлечение из нее бутанов и пентанов — сырья для производства синтетического каучука, а также извлечение аре-иов — сырья промышленности пластических масс и искусственных волокон, жидких и твердых алканов, используемых в микробиологическом синтезе и производств( поверхностно-активных веществ. Эффективное и рациональнО( использование нефти предусматривает детальное изучение свойств сырья, тщательную сортировку нефтей, с тем чтобы обеспе1ИТь в необходимых объемах производство малосернистого электродного кокса, дорожных и строительных битумов. [c.20]

    Быстрый технический прогресс нефтеперерабатывающей про-кышленности позволил создать широкий ассортимент дешевого высококачественного нефтяного углеводородного сырья, ставшего основным исходным материалом для многоотраслевой промышленности органического синтеза. Только на основе нефтехимического сырья могла получить такое могучее развитие промышленность высоконолимерных синтетических материалов (пластические массы, синтетические химические волокна, синтетические каучуки, моющие средства и др.), обеспечившая области новой техники конструкционными материалами с уникальными физико-механи-ческими и эксплуатационными свойствами, а легкую промышленность — большим ассортиментом красивых, прочных и дешевых синтетических материалов для производства товаров широкого народного потребления — одежды, обуви, предметов домашнего обихода, облицовочных материалов. [c.12]

    Большинство каталитических процессов могут быть организованы как непрерывные, безотходные, малоэнергоемкие. Они отличаются высокими технико-экономическими показателями, обеспечивают высокий выход целевого продукта. Использование катализаторов позволяет интенсифицировать химико-технологические процессы, осуществлять превращения, которые не могут быть реализованы на практике без катализатора вследствие весьма высокой энергии активации, направлять процесс в нужную сторону, регулировать структуру и свойства производимых продуктов (например, стереоспецифические катализаторы в производстве синтетических каучуков и пластических масс). Особое значение имеет применение катализаторов в обратимых экзотермических процессах, в которых повышение температуры с целью ускорения реакции резко снижает равновесную степень превращения и делает реакцию термодинамически неразрешенной. В подобных процессах роль катгшизато-ров является первостепенной. [c.127]

    В зависимости от конфигурации молекул (пространственное расположение или двумерная упорядоченность) жидкого нефтяного сырья при термоконденсациоиных процессах наблюдается повышение вязкости пластической массы, что влияет на структурномеханические свойства и устойчивость нефтяных дисперсных систем. [c.20]

    В отличие от твердых видов углерода молекулы в пластических массах (нефтяных пеках) значительно менее упорядочены как в направлении 1 , так и в направлении Ьс. Повышенные значения отношения структурирующихся компонентов к неструктури-рующимся предопределяют химические и физико-химические свойства (увеличение поверхностного натяжения, краевого угла смачивания и др.) и направления использования нефтяных пеков. [c.55]

    Широкое проявление коллоидно-химических свойств в реальных телах обусловливает разнообразие проблем, которые решает коллоидная химия. То же самое можно сказать и о ее приложениях. Представления коллоидной химии используются в астрономии, метеорологии, почвоведении, биологии, агрохимии, материаловедении и др. Коллоидно-химические методы применяются в большинстве отраслей промышленности, особенно в таких, как пищевая, кожевенная, текстильная, резиновая, нскусственпого волокна, пластических масс, взрывчатых веществ, мыловарение, фармацевтическая, анплино-красочная, нефтедобывающая и нефтеперегонная, металлургическая, коксохимическая, строительных материалов. [c.15]


Библиография для Пластические массы свойства: [c.73]   
Смотреть страницы где упоминается термин Пластические массы свойства: [c.84]    [c.166]    [c.103]    [c.500]    [c.103]    [c.4]    [c.10]    [c.381]    [c.468]    [c.232]   
Технология белковых пластических масс (1935) -- [ c.33 ]

Общая химическая технология органических веществ (1966) -- [ c.526 , c.538 , c.544 , c.545 ]

Пластические массы (1961) -- [ c.13 ]

Общая химическая технология (1977) -- [ c.354 , c.355 ]

Техника физико-химических исследований при высоких давлениях (1958) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние вязкости пластификаторов на механические свойства пластических масс

Влияние температурного поля пресс-форм на физико-механические и диэлектрические свойства изделий из пластических масс

Влияния вязкости пластификаторов на диэлектрические свойства пластических масс

Калинин, Е. Н. Комарова. К методике изучения токсических свойств летучих продуктов термоокислительной деструкции пластических масс

Массив свойств

Основные свойства пластических масс, применяемых в химическом машиностроении

Пластическая

Пластические массы

Пластические массы антифрикционные свойств

Пластические массы диэлектрические свойства

Пластические массы механические свойства

Пластические массы на основе химически модифицированного природного полимера — целлюлозы Технология производства, свойства и применение простых и сложных эфиров целлюлозы

Пластические массы общего назначения, их свойства и области применения

Пластические массы общие свойства

Пластические массы теплофизические свойства физико-механические свойств

Пластические массы термические свойства

Пластические массы физико-химические свойств

Пластические массы электрические свойства

Пластические массы, их свойства и применение

Полиамиды как сырье для пластических масс Мюллер Свойства полиамидов

Свойства и пожарная опасность высокомолекулярных соединений и пластических масс

Свойства пластических масс и их применение в промышленности

Свойства пластических масс, применяемых в строительстве

Таблица физических, механических и химических свойств пластических масс

Термические и физико-механические свойства пластических масс

Физико-механические свойства пластических масс

Физические свойства пластических масс

ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ПЛАСТИЧЕСКИХ МАСС



© 2025 chem21.info Реклама на сайте