Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трещины, механизм образовани

    В книге приведены результаты исследований дефектной структуры профилированных кристаллов разных, материалов, которая характеризуется наличием дислокаций, их скоплений, пор, трещин, Механизм образования дислокаций и их скоплений изучен наиболее детально на германии. Показано, что плотность дислокаций может быть уменьшена на несколько порядков, а скопления их полностью устранены с помощью специальных тепловых экранов, которые обеспечивают линейный градиент температуры вдоль растущего кристалла. Эти результаты получены на основе расчетов и измерений распределения температуры по кристаллам, теоретического анализа полей термоупругих напряжений и сопоставления их с экспериментально исследованным распределением дислокаций по кристаллу. [c.254]


    Методами механики разрушения установлены закономерности распределения упруго-пластических напряжений и деформаций в конструктивных элементах с технологическими дефектами, в том числе с угловыми переходами с нулевым и ненулевым радиусом сопряжения в вершине, а также их несущей способности и долговечности. Предложен метод расчета предельных состояний сварных сосудов с поверхностными дефектами. Произведена количественная оценка параметров диаграмм длительной статической и циклической трещиностойкости материала в условиях ВПМ. Объяснен механизм образования на диаграммах длительной статической трещиностойкости участков независимости скорости роста трещин от коэффициента интенсивности напряжений (плато). Теоретически и натурными испытаниями обоснованы методы обеспечения работоспособности сварных соединений со смещением кромок, основанные на регулировании свойств, размеров и формы зон с различным физико-механическим состоянием. Сформулированы закономерности накопления повреждений в материале в процессе гидравлических испытаний оборудования с целью выявления и устранения дефектов. [c.6]

    В послевоенный период на кафедре сварочного производства развивались исследования по теории сварочных процессов (в том числе по изучению электрической сварочной дуги, разработке и изучению керамических флюсов, по свариваемости металлов и изучению природы и механизма образования трещин и хрупкого разрушения сварных соединений), технологии сварки и наплавки, газопламенной обработки, деформаций и напряжений при сварке, изучению влияния электромагнитного перемешивания расплава сварочной ванны на процесс кристаллизации и свойства металла шва, разработке и совершенствованию сварочного оборудования. [c.22]

    При выдаче из печи коксовый пирог имеет большое количество трещин. Большая часть этих трещин, перпендикулярных к стенке камеры, берет свое начало от слоя кокса, называемого цветной капустой . Некоторые из этих трещин разделяют полностью куски кокса один от другого, другие доходят только до середины кусков, но в обоих случаях они сильно влияют на сопротивление кокса ударам и на его гранулометрические характеристики. В настоящей главе изложен анализ механизма образования трещин, перпендикулярных к стенке камеры, количество которых намного превышает все остальные виды трещин. [c.154]


    Схема механизма образования трещин в однородном коксе [c.155]

    Инертные добавки (в) уменьшают скорость усадки при любой температуре. Они противодействуют одновременно двум механизмам образования трещин — со стороны цветной капусты и со стороны центральной части коксового пирога. Они могут, таким образом, сами по себе, значительно уменьшить тенденцию кокса к образованию трещин (что невозможно при использовании инертных добавок а и б). И тем не менее они не очень эффективны в отношении первого механизма вследствие того, что их нельзя употреблять в количестве более 10% смеси из-за снижения спекаемости в этих условиях нельзя говорить об очень значительном уменьшении о смеси. [c.165]

    В настоящее время процессы образования пор при изготовлении эпоксидных композиций исследованы совершенно недостаточно, что затрудняет разработку технологии и обусловливает нестабильность характеристики материала. Основным источником пористости в эпоксидных компаундах является наличие в исходных материалах веществ с высоким парциальным давлением, а также усадка полимера. Для большинства эпоксидных компаундов выделение при отверждении летучих веществ (в отличие от компаундов других типов) не характерно и поэтому здесь рассматриваться не будет. В зависимости от технологии применения компаунда механизм образования пор может быть различным. Следует иметь в виду, что формирование пористости происходит тогда, когда полимер находится в вязкотекучем или высокоэластическом состоянии. После перехода в стеклообразное состояние полимер не способен к большим деформациям, и поры не образуются. Однако в стеклообразном наполненном полимере возникают большие внутренние напряжения [27], которые в некоторых случаях могут привести к образованию системы микротрещин, пронизывающих весь материал. Образование такой системы трещин свидетельствует [c.165]

    Диффузионный механизм образования микротрещин реализуется преимущественно при высоких температурах и низких напряжениях. В этом случае трещины возникают в результате диффузии и коагуляции вакансий на границах зерен. [c.86]

    Релаксационный локальный механизм (образование трещин серебра — крейзов) [c.288]

    На основании изложенного, механизм образования трещин представляется так. В начале нагревания, когда связующее приходит в жидкотекучее состояние, оно перераспределяется в порах заготовки под действием поверхностного натяжения процесс сопровождается усадкой. Если поверхностный слой заготовки при этом подвергается окислению, то вязкость битума увеличивается, что препятствует усадке и вызывает капиллярную миграцию жидкотекучего связующего из внутренней части заготовки к верхним слоям. В результате поверхностный слой заготовки превращается в уплотненную корку, которая усаживается меньше, чем внутренняя часть. [c.192]

    Пироуглерод после охлаждения может иметь трещины, параллельные поверхности осаждения. Состояние подложки определяет размеры конусов [126]. С повышением температуры осаждения число зародышей, из которых растут конусы, увеличивается и конусы начинают "мешать" друг другу часть конусов подавляется соседними в толще пироуглерода. Внутри первоначальных конусов зарождаются и растут новые — вторичные. Поскольку угол раствора конусов может достигать 40°, вблизи наружной поверхности конусы, соприкасаясь, "теснят" друг друга, вследствие чего их образующие становятся параллельными, отсюда название "столбчатая структура" [1]. Коническая структура присуща пироуглероду, осажденному как при низкой, так и при высокой температуре пиролиза различных углеводородов. Поэтому механизм образования конусов материала един во всем диапазоне температур. [c.217]

    На 1-м этапе, под воздействием коррозионной среды, образуется меж- или транскристаллитная трещина, а на 2-м - происходит увеличение полости трещины за счет коррозионного растворения ее стенок и воздействия механических растягивающих напряжений, увеличивающихся за счет уменьшения живого сечения стенки трубы. Межкристаллитный механизм зарождения трещин связан с выявленной значительной повреждаемостью границ зерен карбонат-бикарбонатной средой, образующейся в приэлектродном слое катодно-поляризуемой поверхности трубы. Как это было показано в результате ранее проведенных исследований [1, 212], прямое воздействие солей угольной кислоты на сталь при наличии поляризации вызывало селективное травление на границах зерен. На сталях группы прочности Х70 чаще наблюдается транскристаллитный механизм образования трещин на 1-м этапе развития, вероятно, вследствие большего воздействия механического фактора на процесс разрушения стали. На 2-м этапе, при растворении металла, трещина развивается в [c.18]

    Изложены современные представления о причинах и механизме образования холодных трещин в сварных соединениях сплавов на основе титана, базирующиеся на результатах исследований авторов, а также данных отечественных и зарубежных исследователей. Рассмотрены методики проведения исследований, дана сравнительная оценка склонности к растрескиванию различных титановых сплавов в сварных соединениях. Описаны способы предупреждения образования холодных трещин в сварных соединениях в зависимости от условий работы изделий из титановых сплавов. [c.318]


    Имеется много различных дислокационных механизмов образования зародышевых трещин [8—13]. Зарождение трещины скола при негомогенной пластической деформации в металлах объясняется тем, что у конца задержанной полосы скольжения возникает большая концентрация сдвиговых напряжений, по величине превышающая силы межатомной связи материала. Поэтому возникает трещина сдвига. Необходимое напряжение достигается блокированием дислокаций у барьеров, которыми могут служить границы зерен в поликристаллах или частицы твердой второй фазы в загрязненных металлах. В зависимости от кристаллической структуры материала возможны и другие механизмы зарождения трещины (рис. 3). Общим для всех механизмов зарождения трещин является то, что этот процесс — следствие пластической деформации. [c.23]

    Для разных тел, по-видимому, характерны различные механизмы образования трещин. В поликристаллах роль трещин играют участки неплотного контакта между отдельными кристаллическими зернами [100, с. 981]. В монокристаллах слабыми местами следует считать места выхода пластических сдвигов на поверхность [101, 102, с. 271]. Трещины могут возникать также на включениях или неоднородностях, механические свойства которых отличаются от механических свойств образца в целом [103, с. 51]. [c.18]

    Механизм образования трещин может быть сложным. Как следует из подробного анализа аналитических и экспериментальных данных [13 462, с. 813 463, с. 164], под действием наПряже- [c.167]

    Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойникования (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой пересечение малоугловых границ аннигиляции дислокаций в близко расположенных плоскостях скольжения возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака. [c.86]

    Одновременно в процессе деформации в образцах возникают дырки эллипсоидальной формы, через которые видны различные надмолекулярные образования, расположенные в нижнем слое пленки (рис. 1, д). Большой диаметр эллипсоидальных дырок (иногда достигающий значений более 200 ) всегда совпадает с направлением растяжения. Механизм образования дырок, по-видимому, следующий в результате удлинения пленки, т. е. вытягивания сферолитов, сечение пленки уменьшается. В тех местах, которые подвергаются большей деформации или где структура менее компактна, сечение вытянутой части сферолитов сильно уменьшается, в результате чего образуется трещина, которая при дальнейшем растяжении принимает форму дырки. [c.404]

    Появление трещин, заполненных микрофибриллами — отличительная черта деформации полимерных монокристаллов. Каков же механизм образования микрофибрилл, возникающих при растяжении кристаллов По этому поводу есть достаточно разноречивые суждения. [c.173]

    Механизм образования пленки можно представить себе следующим образом молекулы химического реагента (в приведенном примере —иода), адсорбируясь на поверхности металла, распадаются на атомы, которые реагируют с атомами металла, образуя иодистый металл. На поверхности металла возникает мономолекулярная пленка иодистого металла. Если бы эта пленка была совершенно плотной, то атомы иода не могли бы через нее диффундировать к поверхности металла и процесс коррозии на этом и закончился бы. Практически образовавшаяся пленка недостаточно плотна, и атомы иода могут проникать сквозь ее поры и трещины к поверхности металла, в результате чего образуются новые слои молекул иодистого металла. [c.18]

    Для исследования механизма образования новых центров грануляции были изучены фотоснимки поверхности монофракций гранул различных размеров и срезы частиц. Мелкие частицы представляют собой осколки неправильной формы, а крупные частицы испещрены трещинами и имеют отдельные вырванные поверхности. Это является подтверждением того, что новые центры грануляции образуются в результате дробления крупных частиц. [c.75]

    К числу минеральных надо отнести и гипотезу Кудрявцева, назвавшего ее магматической. Согласно его представлениям, жидкая нефть изначально содержится или же образуется в магме в незначительных концентрациях и по трещинам и разломам проникает в осадочные породы, заполняя поровые песчаники. Механизм образования нефти автором и его последователями практически не раскрыт, если не считать туманных ссылок на синтез углеводородов из окиси углерода и водорода по реакции Фишера— Тропша или же из свободные радикалов СН- и СНа-. Не разработан также и механизм ми рации предполагаемой нефти из магматических пород в осадочные. [c.28]

    Приведенные данные согласуются с литературными данными [72,237]. В частности, в работе [237] диаграмма коррозионной статической трещиностойкости представляется состоящей из трех участков (рис.5.35,д и е). На среднем участке (наиболее продолжительном) скорость распространения не зависит от коэффициента интенсивности напряжений. На этом рисунке через К1зсс обозначено пороговое значение КИН, ниже которого трещина растет крайне медленно. Упрощенная диаграмма статической трещиностойкости в коррозионных средах представлена на рис.5.35,е. Таким образом, с позиции МХПМ объяснен механизм образования на диаграммах длительной статической трещиностойкости участков независимости скорости роста трещин от КИН. Во всяком случае, формула (5.52) может быть использована при аппроксимации среднего участка диаграмм длительной статической трещиностойокости в коррозионных средах. [c.350]

    При попытке согласовать различные частично неудовлетворительные критерии начала роста трещины серебра с экспериментальными данными Аргон [165—167] и Кауш [11] предложили модели процесса возникновения трещины серебра, которые учитывают молекулярную структуру, жесткость цепей, конформационные изменения и межмолекулярное взаимодействие. Критерий перехода от области А к области В, предложенный Аргоном, основан на разрыве вогнутых границ раздела воздух— полимер (табл. 9.4). Кауш описал механизм образования зародыша трещины серебра, включающий три стадии  [c.377]

    Для ряда образцов было зафиксировано образование питтингов на поверхностях трения. Характер процессов, протекающих в контакте в динамических условиях, и механизм образования питтингов может быть различным. Как известно, реальная поверхность металла характеризуется повышенной концентрацией дефектов строения - вакансий, дислокаций и т.п. При интенсивном деформировании поверхностных слоев металла при трении дефекты служат концентраторами напряжений и являются очагами зарождения микротрещин. В результате многократного циклического деформирования происходит развитие микротрещин, их смыкание, отслаивание частиц износа и образование пит-тйнгов вследствие контактной или фрикционной усталости металла. Большую роль при этом играет, как указывалось выше, адсорбционное понижение прочности поверхностных слоев металла вследствие эффекта Ребиндера, химическая коррозия, вь1зываемая серосодержащими лрисадками, а также электрохимическая питтинговая коррозия, возникающая в местах скопления поверхностных дефектов в результате пробоя пассивирующей поверхности пленки окисла. О механизме образования питтингов можно было в какой-то степени судить по их виду. Питтинги усталостного происхождения имели неправильную форму, неровные края, от которых могли отходить поверхностные трещины. Такие питтинги наблюдались для эфира 2-этилгексанола и фосфорной кислоты. Серосодержащие присадки ОТП и Б-1 вызывали появление большого количества мелких питтингов, В присутствии хлорсодержащих присадок хлорэф-40 и совол возни- [c.43]

    Механизм зарождения трещин при образовании плоских дислокационных скоплений может быть связан с тепловыми флуктуациями. Если последние вьЕзовут образование двойного перегиба на дислокации, расположенной вслед за головной в скоплении, то может произойти раскрытие трещины на длине / глубиной h 2b (рисунок 2.1.3). [c.39]

    Анодная поляризация в растворе Н2804 (с концентрацией ОД-18 моль/дм- ) СУ, полученного при 2000 С, вызывает образование мозаики микротрещин и соответствующее увеличение микропористости при потенциале выделения кислорода выше 2 В [8-45]. При этом коррозия не идет по механизму образования межслоевых соединений, а распространяется от дефектов. Продукты коррозии имеют более упорядоченную структуру. С понижением температуры получения СУ его химическая стойкость пониж а-ется [8-46]. Это объясняется потерей прочности СУ, полученного при низких температурах (1100 С), в связи с образованием коррозионных трещин. Для СУ, полученного при 2000 С, наблюдается только питтинговая коррозия при сохранении прочности (рис. 8-22). [c.503]

    Механизм образования трещин при бурении скважины аналогичен гидравлическому разрыву во время ее заканчивания единственное различие между ними заключается в том, что второй совершается преднамеренно и желателен, а первый — непреднамеренно и в высшей степени нежелателен. Трещина возникает во всех случаях, когда разность между давлением бурового раствора и пластовым давлением (рт—р/) превышает прочность пласта на растяжение плюс напряжение сжатия в окружающем скважину массиве горных пород. Поскольку прочность пород на растяжение обычно мала по сравнению с напряжениями сжатия, ее обычно (хотя и не всегда обоснованно) исключают из расчетов. Образующаяся трещина распространяется перпендикулярно к направлению действия наименьшего главного напряжения. За исключением районов с активным горообразованием наименьшее главное напряжение горизонтально, поэтому образующаяся при бурении трещина вертикальная. Как уже говорилось в разделе главы 8, посвященном напряжениям вокруг ствола скважины, наименьшее главное напряжение аз равно вызываемому горным давлением эффективному напряжению (5—Pf), умноженному на коэффициент fei, численное значение которого зависит от тектониче- [c.361]

    Согласно представлениям этих исследователей, соединения углерода с водородом существовали в газовой оболочке Земли, когда она находилась еще в огненно-жидком состоянии. В результате остывания Земли происходили конденсация УВ, затем поглощение их остывающей магмой и после по разломам и трещинам внедрение их в осадочную оболочку Земли. Как видно, В. Д. Соколов придерживался в отношении образования Земли точки зрения Канта и Лапласа, которые предполагали образование планеты за счет вещества, находившегося в огненно-жидком состоянии. Такого представления о механизме образования Земли придерживаются некоторые исследователи и в настоящее время (В. Г. Фесенков, Ф. Хойль и др.). Однако По хорошо аргументированным космогоническим представлениям О. Ю. Шмидта, которые разделяют многие ученые мира. Земля никогда не находилась в огненно-жидком состоянии, она образовалась в результате сгущения космической холодной газопылевой материи (оболочки). Тем более, что трудно [c.21]

    Итак, быстрый разрыв происходит без образования надрывов, в результате прорастания треш,ин разрушения, медленный—путем образования и прорастания надрывов . В первом случае поверхность разрыва гладкая, во втором—шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающие шероховатую зону поверхности разрушения, на второй— дефекты в виде трещин, дающие гладкую зону. В соответствии с этим разрушение резин происходит вследствие роста дефектов двух видов надрывов и трещин . Механизм разрушения ири прорастании трещин в резине аналогичен таковому ири разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. Образование сильноориентированных тяжей на первой стадии разрушения связано с преодолением межмолекулярных связей. Поэтому молекулярный механизм медленного разрыва высокоэластичных полимеров состоит из элементарных актов, включающих преодоление межмолекулярного взаимодействия при образовании тяжей и разрыв химических связей. [c.111]

    Такие модели применяют дяя объяснения механизма образования холодных трещин в процессе вьмеживания сваренной детали, к которой никаких внешних сил не приложено. Основная мысль в этих опытах состоит в том, что на разрушение расходуется энергия, накопленная во всей детали, а не только в той ее части, которая может разрушиться. Точно такая же интерпретация используется и в отношении разрушений, возникающих при нагреве и вьщержке во время термической обработы . [c.448]

    Процессы зарождения и развития крейзов, их структура и влияние на прочность полимеров исследованы во многих работах [4.44-—4.47, 7.39—7.44]. Камбур [7.43] показал, что трещина начинает расти в том месте полимера, где происходит в малом объеме формирование материала, деформация которого происходит микронеоднородно и приводит к образова-нию большого числа малых сфероидальных пустот. Исследовалась также поверхность разрушения ПММА. Свежеобразоваи-ные поверхности многих полимерных стекол окрашены. Измерялся коэффициент преломления света поверхностным слоем полимера на поверхности разрушения и было установлено, что поверхностный слой имеет ту же структуру, что и материал внутри крейза (на поверхностях остаются образованные тяжи). Толщина поверхностного слоя в местах, где скорость роста трещины серебра близка к нулю (перед остановкой роста трещины), для ПММА оказалась равной 0,68 мкм. При медленном росте трещины очень велика затрата упругой энергии на пластическую (вынужденную высокоэластическую) деформацию. Поскольку механизм образования трещин серебра неизвестен [7.43], можно только предполагать, что работа пластической деформации, затрачиваемая на их образование, равна работе вынужденной высокоэластической деформации такого же объема материала. Материал в трещине серебра подвергается растяжению на 60%, что должно приводить к затратам на пластическую деформацию поверхностного слоя ПММА, равным (1,77—2,67)-10 2 Дж/см , в то время, как свободная поверхностная энергия равна всего около 4-10- Дж/см2. [c.212]

    Цитированные работы в основном посвящены исследованию механизма образования и роста трещин серебра , а не построению теории долговечности полимера в этой области температур. Как видно из рис. 7.1, переход аморфного полимера из области IV в область V происходит при температуре структурного стеклования Тс, причем, но данным Степанова с сотр. [5.37—5.45], межмолекулярные взаимодействия при переходе через Тс не претерпевают изменений. Никаких особенностей не наблюдается при Тс и на температурной зависимости прочности (см. рис. 7,1). Это указывает на то, что трещина серебра с микротяжами при повышении температуры постепенно превращается в высокоэластическом состоянии в надрыв с макро-тяжами. [c.213]

    Установлено, что быстрый разрыв происходит без образования надрывов в результате прорастания трещин разрушения, а медленный — путем образования и прорастания надрывов. В первом случае поверхность разрыва гладкая, во втором — шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающих шероховатую зону поверхности разрушения, на второй — дефекты в виде трещин, дающие гладкую зону. Значительно позже к тем же результатам пришел Кнаусс. Он приводит интересную диаграмму (рис. 7.15), демонстрирующую переход от одного механизма разрыва к другому. При уменьшении скорости растяжения трещина трансформируется в надрыв. В соответствии с этими данными разрушение эластомеров происходит вследствие роста дефектов двух видов надрывов и трещин, вероятность образования которых различна и зависит от условия опыта. Механизм разрушения при прорастании трещин в эластомере аналогичен таковому при разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. [c.223]

    МИКРОТРЕЩИНЫ — трещины, выявляемые с помощью оптического микроскопа. Размеры их соизмеримы с элементами микроструктуры и измеряются тысячными долями миллиметра. Ширина (раскрытие) микротрещины переменна и уменьшается к концам ее до размеров, сравнимых с межатомными. Образование М. может происходить на разных стадиях изготовления материала и изделий (при литье, обработке давлением, резанием и т. д.), в процессе упрочняющей обработки, а также при разрушении изделий, предшествуя распространению магистральной трещины. Зарождение и докритиче-ское увеличение М. при нагружении изделий представляют собой первую стадию разрушения (рис.). Причиной образования М. является пластическая деформация, вызванная приложенным или возникшим в материале напряжением. В кристаллических телах под действием напряжения (вследствие взаимодействия дислокаций) возникает субмикротрещина, развивающаяся затем до микротрещины. Известно несколько дислокационных механизмов образования М., один из к-рых — образование М. в частицах карбидных или неметаллических включений, способствующих концентрации напряжений. Более 90% микротрещин в технических поликристаллических металлах возникает по этому механизму. На Л1ШПИ или вблизи М. существуют значительные напряжения, уменьшающиеся по мере удаления от нее. Количество, размеры и распределение М. определяют инкубационный период разрушения. В металлах иочти всегда есть или появляются (на самых ранних этапах деформирования) микротрещины. Их количество в иоверхностных слоях (порядка нескольких микрометров) в два-три раза больше, чем в объеме. При деформировании сосуществуют два процесса образование микротрещин и их рост. М. обнаруживают с помощью ультразвуковой дефектоскопии, электроиндуктивной дефектоскопии, люминесцентного метода дефектоскопии и др., а также [c.823]

    Механизм образования сетки трещин разгара довольно сложный. В результате нагрева поверхностного слоя шейки происходит резкое разупрочнение металла. Под действием нагрузки, передаваемой на ось, в поверхностном слое создаются при знакопеременном изгибе максимальные напряжения растяжения-сжатия. При дальнейшей работе подшипника температура поверхностного слоя шейки повышается до 750—800°С и более, возникают значительные силы схватывания металла, разрушаются не только разупрочненные его слои, но происходят вырывы отдельных не разупрочненных микрообъемов металла. [c.117]


Смотреть страницы где упоминается термин Трещины, механизм образовани: [c.389]    [c.337]    [c.259]    [c.108]    [c.131]    [c.55]    [c.108]    [c.11]    [c.632]    [c.75]    [c.103]   
Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм образования АТФ



© 2025 chem21.info Реклама на сайте