Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Г л а в a 111. Основные закономерности адсорбции полимеров

    Несмотря на то, что в последнее время появилось много работ, посвященных адсорбции полимеров на различных твердых поверхностях [133, 141—143, 164, 187—190, 194, 195], достаточной ясности в теории адсорбции полимеров еще нет. (Основными факторами, влияющими на адсорбцию полимеров на различных поверхностях, являются молекулярный вес полимера, концентрация раствора, тип растворителя, температура и, разумеется, природа адсорбента и адсорбтива У Рассмотрим вначале основные закономерности адсорбции полимеров из разбавленных растворов. Как правило, изотермы адсорбции из разбавленных растворов представляют собой кривые, достигающие насыщения при определенных концентрациях. Толщина адсорбционного слоя значительно превышает размеры мономолекулярного слоя. В связи с этим было предложено несколько моделей структуры адсорбционных слоев [142, 144—148, 182, 183]. При сильном взаимодействии макромолекулы с поверхностью возможно ее разворачивание под влиянием адсорбционных сил [149]. Такая молекула лежит на поверхности плашмя, причем адсорбируется несколько слоев молекул. ]Иожно представить себе, что адсорбированная макромолекула имеет форму статистического клубка [147, 148, 152, 153, 163]. И наконец, адсорбированная макромолекула может образовывать складки, будучи связана с поверхностью только несколькими сегментами. Последний случай наиболее вероятен для длинноцепных гибких макромолекул полимеров [144—146, 150, 163]. В частности, подобный характер адсорбции был экспериментально обнаружен в системе кремнезем — полиметилмет-акрилат [151] и подробно рассмотрен в работах Симхи, Фриша и Эйриха [144-146]. Поскольку конформация полимерной цени в растворе зависит от природы растворителя, этот фактор оказывает существенное влияние на характер адсорбции. В разбавленных растворах в плохих растворителях макромолекулы вследствие меньшего взаимодействия с растворителем более свернуты и адсорбируются в большей степени. Так, для политриметиленади-пипата хорошим растворителем является хлороформ, плохим — толуол. В последнем случае адсорбция на стекле оказывается в 5 раз больше [143]. Но иногда наблюдается обратная зависимость адсорбция нолидиметилсилоксана на стекле [154] из бензольного раствора (плохой растворитель) меньше, чем из четыреххлористого углерода (хороший растворитель). Это явление авторы объясняют конкурирующей адсорбцией растворителя на поверхности адсорбента, что препятствует адсорбции полимера. [c.23]


    Адсорбционное и адгезионное взаимодействие полимерных молекул с поверхностью, рассмотренное в предыдущих главах, является одним из важнейших факторов, определяющих свойства наполненных и армированных полимеров, клеевых соединений и покрытий. Рассмотрение основных закономерностей адсорбционных процессов показывает [24], что при адсорбции полимера на твердой поверхности происходят изменения конформации макромолекул. Это определяет структуру адсорбционных слоев и ее отличия от структуры полимера в растворе или в массе. Совершенно очевидно, что особенности структуры адсорбционных слоев, образующихся при. адсорбции полимеров на твердой поверхности из жидкой фазы, должны проявляться в таких практически важных системах, в которых адсорбционное взаимодействие полимера с твердой поверхностью реализуется в отсутствие растворителя, — в армированных и наполненных композициях, покрытиях и т. д. Для понимания свойств этих систем и нахождения путей их регулирования важно уметь оценивать поведение полимера в поверхностных слоях в таких гетерогенных системах. Адсорбционные методы, позволяя выявить ряд существенных особенностей взаимодействия полимера с твердыми поверхностями, не дают информации о свойствах самого полимера. Это связано с тем, что адсорбционные явления в растворе отличаются от возникающих при взаимодействии полимера с твердой поверхностью в отсутствие растворителя. Это обусловлено различием конформаций цепей в растворе и в массе и существованием сильных взаимодействий между макромолекулами в объеме полимера. [c.88]

    ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ АДСОРБЦИИ ПОЛИМЕРОВ [c.37]

    Основные закономерности адсорбции полимеров из разбавленных растворов [c.16]

    В книге обобщаются результаты многочисленных исследований в области адсорбции полимеров на твердых поверхностях, подробно рассматриваются методы исследования адсорбции полимеров, основные закономерности влияния на адсорбцию природы полимера, растворителя, сорбента. Дается теоретическое описание процессов адсорбции и выясняется ее специфика по сравнению с адсорбцией ниэкомолекулярных веществ с точки зрения современных представлений о структуре макромолекул. [c.2]

    Анализ теоретических работ, посвященных особенностям адсорбции макромолекул, позволяет объяснить основные термодинамические закономерности, наблюдаемые в хроматографии полимеров на макропористых сорбентах. Как мы видели в гл. II, изменение свободной энергии макромолекул при адсорбции [c.290]


    Анализ материала, излол<енного в настоящей монографии, позволяет сделать некоторые общие выводы, касающиеся проблемы адсорбции полимеров на твердых поверхностях. Эти выводы базируются на современной теории разбавленных растворов полимеров и конформационной статистике полимерных цепей. Учет поведения макромолекул в разбавленных растворах, основанный на статистической термодинамике, позволил в настоящее время установить основные закономерности адсорбции полимеров и ее зависимость от природы полимера, поверхности, молекулярного веса и молекулярновесового распределения полимера, природы растворителя и температуры. [c.183]

    Адсорбция полимеров на границе раздела фаз с твердым телом играет важную роль в усиливающем действии наполнителей, адгезии, склеивании и т. п. Адсорбционное взаимодействие является одним из важнейших факторов, определяющих свойства наполненных и армированных полимеров, свойства клеевых прослоек, адгезию полимеров и др. Рассмотренные в предыдущих главах основные закономерности адсорбционных процессов показывают, что при адсорбции полимера на твердой поверхности происходят изменения конформации макромолекул, которые определяют структуру адсорбционных слоев и ее отличия от структуры полимера в растворе или в массе. Совершенно очевидно, что многие особенности структуры адсорбционных слоев, получаемых при адсорбции полимеров на твердой поверхности из жидкой фазы, должны сохраняться и в таких системах, в которых адсорбционное взаимодействие полимера с твердой поверхностью реализуется в отсутствие растворителя, т. е. во всех практически важных системах (армированных и наполненных пластиках, покрытиях, клеях и т. п.). Для понимания свойств систем и нахождения путей их регулирования крайне важно знать структуру адсорбционных слоев в таких гетерогенных полимерных материалах. Между тем адсорбционные методы, позволяя выявить ряд существенных черт взаимодействия полимеров с твердыми поверхностями и поведения полимеров на границе раздела, не могут дать полных сведений о структуре граничных слоев в полимерных материалах. Это связано с тем, что адсорбционные взаимодействия в растворе не идентичны таковым в отсутствие растворителя. Последнее обстоятельство обусловлено отличием конформаций макромолекулярных цепей в растворе от конформаций в высокоэластическом, стеклообразном или кристаллпческо.м и вязкотекучем состояниях. [c.153]

    Вюрц [401] разбирает вопрос о связи между строением и на-крашиваемостью синтетических волокон. Вегман [402] установил закономерную связь между светопрочностью основных красителей на полиакрилонитрильных волокнах и их основностью. С повышением основности красителя его светопрочность на полиакрилонитрильных волокнах, как правило, понижается. Гленц [403] установил, что первичный процесс крашения состоит в адсорбции основного красителя поверхностью полиакрилонитрильного волокна, затем следует растворение красителя в фазе волокна и его диффузия в глубь волокна. Основная часть поглощенного красителя химически связывается кислыми груп- -пами полиакрилонитрильного волокна. Помимо этой химически связанной части, некоторая доля красителя находится в растворенном состоянии и небольшая доля — в поверхностном сорбционном слое. Наивысшей светопрочностью обладает химически связанный краситель. Фрелих [404] предлагает для облегчения процесса крашения полиакрилонитрильного волокна осуществлять 1) нарушение кристаллической структуры волокна введением в молекулы боковых цепей 2) введение в структуру полимера активных групп (окси-, аминогрупп и других) 3) применение при крашении темп. > 100° 4) создание новых типов красителей. Поцца [405] считает, что наиболее применимо для синтетических волокон крашение в условиях повышенного давления и темп. > 100°. [c.572]

    Основная сложность заключается здесь в том, что только в небольшом числе случаев полимеры можно рассматривать как инертные сорбенты по отношению сорбируемому веществу и соответственно применять те закономерности, которые достаточно полно в настоящее время выявлены и количественно интерпретированы в области адсорбции и капиллярной онденсации на твердых инертных телах. В основной же массе системы из-комолекулярное вещество — полимер нельзя рассматривать как совершенно несовместимые, и поэтому следует считаться не только (и чаще е столько) с поверхностными явлениями или с конденсацией паров жидкостей в порах, но и с более сложными процессами набухания полимера в жидкости или ее парах и, следовательно, с изменением структуры сорбента как в ходе сорбционных процессов, так и при десорбции поглощенного вещества. [c.10]



Смотреть страницы где упоминается термин Г л а в a 111. Основные закономерности адсорбции полимеров: [c.101]    [c.100]   
Смотреть главы в:

Адсорбция полимеров -> Г л а в a 111. Основные закономерности адсорбции полимеров




ПОИСК





Смотрите так же термины и статьи:

Основные закономерности



© 2025 chem21.info Реклама на сайте