Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Красители удельной поверхности

    Удельную поверхность можно также определить на основе данных по абсорбции либо газов (метод БЭТ определения удельной поверхности [138]), либо красителей (в частности, метиленового голубого), или по теплоте смачивания поверхности [321]. Некоторые из этих методов позволяют найти полную удельную поверхность частиц, включая и внутреннюю поверхность, даже если размеры пор частиц не превышают нескольких нанометров. Применение этих методов для частиц с сильно развитой поверхностью (например частиц угля в дыме) может привести к неточности в определении удельной поверхности. [c.96]


    В настоящее время адсорбцией красителей, в частности метиленовой сини, пользуются для определения удельной поверхности различных веществ, что может быть объяснено сравнительно простой техникой эксперимента, а также тем, что в ряде случаев, например на производствах, необходима сравнительная [c.120]

    Такая сравнительная оценка величины поверхностей может быть проведена методом адсорбции красителей. Однако следует иметь в виду, что для абсолютных определений удельной поверхности этот метод весьма неточен и часто совершенно непригоден. [c.121]

    Определение по адсорбции красителей. Для определения удельной поверхности крупнопористых веществ может быть применен метод адсорбции из жидкой фазы. Построение изотерм адсорбции из растворов производят при контактировании раствора хорошо адсорбируемого вещества в жидком растворителе с навеской адсорбента. Массу поглощенного вещества определяют по изменению концентрации адсорбтива в растворе. Наиболее часто для определения удельной поверхности используют красители. Последние обладают высокой преимущественной адсорбцией в присутствии растворителя. В связи с этим после образования мопослоя молекул красителя растворитель практически полностью вытесняется с поверхности. Методика определения концентрации красителей очень проста [28]. [c.53]

    На этих адсорбентах процесс физической адсорбции осложняется ионным обменом. В связи с этим метод, основанный на адсорбции красителей, следует применять только после установления площадки молекулы на стандартном адсорбенте идентичной химической природы. Возможно произвести оценку удельной поверхности непосредственно по соотношению предельной адсорбционной способности исследуемого и стандартного веществ. [c.54]

    Попытка применить метиленовую синь для оценки удельной поверхности вторичной пористой структуры гранулированных цеолитов не дала положительных результатов [33]. Краситель не проникает внутрь гранул, и даже после контакта с цеолитом в течение 200 ч адсорбция ограничивается наружным слоем гранул толщиной 0,1 мм. При измельчении гранул происходит разрушение вторичной пористой структуры. В равной степени была безуспешной попытка определить внешнюю поверхность кристаллов цеолитов по адсорбции красителей из растворов образование устойчивых эмульсий снижает точность эксперимента. [c.54]


    При одновременном присутствии в сточных водах ПАВ и красителей различного химического строения в качестве предварительной стадии очистки целесообразно также использовать коагуляцию. Эффективность применения коагулянтов для удаления красителей- из сточных вод в значительной мере определяется химической природой извлекаемых красителей (см. главу II). Остаточные концентрации таких красителей достаточно эффективно можно извлекать из воды сорбцией на активном угле. Целесообразность использования коагулянтов для предварительного удаления части красителей из сточных вод обусловлена также плохой адсорбируемостью ряда красителей на углеродных сорбентах, обусловленной химической структурой красителей. Так, при адсорбции на углеродном сорбенте прямого, чисто-голубого, имеющего в своей структуре четыре симметричных сульфогруппы, лишь 66% эффективной удельной поверхности сорбента может быть занято молекулами этого вещества. Это обусловлено тем, что более плотной упаковке адсорбционного слоя препятствует отталкивание полярных групп [43]. Между тем, для крупных ионных ассоциатов красителей недоступны микропоры и часть переходных пор активного угля. Более того, с увеличением фактора ассоциации красителей величина их удельной адсорбции на пористом сорбенте начинает снижаться [43]. [c.258]

    Адсорбция красителей на кремнеземных порошках, проводимая с целью оценки значений удельных поверхностей, известна уже давно, поскольку для ее изучения достаточно простого колориметрического метода. Ряд исследователей изучали адсорбцию метиленового голубого, а также факторы, влияющие на такую адсорбцию [84, 85]. Авторы работ [86, 87] выполнили сравнение адсорбции из растворов ряда катионных красителей, в том числе метиленового голубого и кристаллического фиолетового. Исследования адсорбции проводились на различных кремнеземных порошках из растворов красителей в -нитрофеноле или в воде, и полученные результаты были скорректированы со значениями удельных поверхностей, найденных методом БЭТ по адсорбции азота и криптона, а также методом электронной микроскопии. [c.647]

Рис. 136. Разделение смеси красителей на оксиде алюминия (три образца с различной удельной поверхностью) при четырех различных значениях относительной влажности. Рис. 136. <a href="/info/190748">Разделение смеси</a> красителей на <a href="/info/1498">оксиде алюминия</a> (три образца с <a href="/info/1753165">различной удельной</a> поверхностью) при четырех <a href="/info/1674028">различных значениях относительной</a> влажности.
    Для многих материалов (абразивные и полировальные порошки, наполнители, пигменты и красители, порошки для кристаллизации капель в переохлажденных облаках и др.) интерес представляет только внешняя удельная поверхность, т. к. рабочие функции выполняет только внешняя поверхность. [c.90]

    Определение удельной поверхности катализаторов. Удельная поверхность катализаторов может быть определена различными способами, но даже простейшие из них достаточно сложны [31, 32]. Прост и удобен метод определения по адсорбции метиленовой голубой. Этот способ основан иа том, что метиленовая голубая сорбируется из водного раствора твердыми сорбентами по всей их поверхности, причем 1 мг красителя сорбируется 1 м катализа, тора [133]. Правда, при определении абсолютных величин удельных поверхностей по адсорбции метиленовой голубой возможны значительные ошибки, так как на разных поверхностях ориентации молекул красителя может меняться [c.176]

    Длительное время не было надежных методов измерения удельной поверхности пористых тел. Некоторые исследователи [293—294] предлагали оценивать величину адсорбирующей поверхности сорбентов по теплоте смачивания органическими жидкостями, по предельной адсорбции различных красителей и спиртов из водных растворов [295— 297], основываясь на представлении об образовании моно-молекулярного слоя на поверхности адсорбента. Однако Киселев и его сотрудники [298] показали, что само представление о мономолекулярном строении адсорбционного слоя в случае адсорбции из растворов является неверным. Надо полагать, что полученные указанными методами значения не дают правильной оценки величин удельной поверхности пористых тел. [c.140]

    Для оценки удельной поверхности, а с ее помощью и размеров частиц часто применяется адсорбция растворенного вещества из раствора, особенно адсорбция красителей. При более простой по сравнению с адсорбцией газов экспериментальной постановке этого метода его теоретическое рассмотрение настолько осложнено адсорбцией растворителя, что применимость этого метода значительно сужается. Детальные причины этого будут выяснены в гл. 7. Явления, происходящие на границе раздела между жидкостью и твердым телом, используются в методе определения удельной поверхности по теплоте смачивания. Этот метод трудно осуществим экспериментально, если удельная поверхность не достигает значительной величины, порядка десятков квадратных метров на грамм. Метод определения удельной поверхности по теплоте смачивания рассматривается в гл. 7. [c.34]


    Наиболее часто для определения удельной поверхности по адсорбции из растворов используют красители из-за простоты методики определения изменения концентрации [57]. Однако, как будет видно из дальнейшего, к этому методу следует также относиться осторожно. [c.328]

    Часто для определения удельной поверхности по адсорбции красителей рекомендуют использовать метиленовую синь [27]. Но недавно было показано [15], что и в данном случае к полученным значениям удельной поверхности нужно относиться достаточно осторожно. Изотермы адсорбции метиленовой сини из водных растворов были измерены при 20° на саже сферон и искусственном графите, поверхность которых была определена независимым методом. Обе полученные изотермы по форме (рис. 160) относятся к изотермам I типа (по классификации БЭТ) при более высоких концентрациях величина адсорбции не зависит от концентрации. Площадка, приходящаяся на одну молекулу метиленовой сини, оказалась равной для сажи сферон и сажи графой 102 и 108 А . Эти значения гораздо меньше величины Л 1=135 А , соответствующей горизонтальной ориентации адсорбированной молекулы метиленовой сини, и гораздо больше величины Ат = 75 А , отвечающей вертикальной ориентации этих молекул в плотной упаковке. Было высказано предположение, что в действительности молекулы ориентированы вертикально, но между ними проявляется взаимное отталкивание, что приводит к их рыхлой упаковке на поверхности. [c.330]

    Все это показывает, как осторожно надо подходить к методу определения удельной поверхности по адсорбции красителей. При применении этого метода следует ограничиться изотермами с четким плато. Кроме того, следует уделить внимание следующим факторам  [c.331]

    К сожалению, эти факторы можно определить лишь в редких случаях. Поэтому адсорбцию красителей следует рассматривать практически лишь как относительный метод, т. е. определение удельной поверхности исследуемого адсорбента производить путем сопоставления изотермы адсорбции данного красителя с его изотермой на стандартном образце той же химической природы. [c.331]

    Удельная поверхность большинства красителей и ряда полупродуктов очень велика, порядка 10 —10 Jli /лi поэтому при фильтровании таких суспензий в большой степени проявляется действие различных физико-химических явлений, связанных с проявлением поверхностных сил, о чем будет идти речь в следующих разделах настоящей главы. [c.68]

    В 100 мл водного раствора метиленового голубого содержится 0,15 мг красителя, Оптическая плотность раствора (или молярное поглощение) при некоторой длине волны составляет 0,65. После добавления 25 мг активного угля оптическая плотность раствора снизилась до 0,20, Оцените удельную поверхность угля. [c.335]

    Для оценки удельной поверхности порошкообразного твердого вещества можно использовать адсорбцию красителя из раствора. Предположим, что при введении 1 г костяного угля в 100 см 10 М раствора метиленового голубого равновесная концентрация красителя падает до 0,6-10 М, а при введении 2 г костяного угля равновесная концентрация красителя равна 0,4-10- М. [c.336]

    Для определения удельной поверхности порошков можно использовать адсорбцию красителя из раствора. Предположим, что 1 г костяного угля приводится в равновесие с 100 см раствора метиленового голубого. Первоначальная концентрация раствора—10- М, конечная — 0,6-10 М. Однако, если навеску угля удвоить (2 г), конечная концентрация раствора становится равной 0,4-10 М. [c.500]

    Интересно отметить, что скорость старения практически уменьшается до нуля в присутствии адсорбированного слоя красителя на поверхности сульфата свинца 1 , хлорида серебра сульфата бария бромида серебра хромата свинца Поэтому скорость обмена радиоактивных изотопов может быть использована для определения удельной поверхности при условии предварительного добавления адсорбирующегося красителя с целью предотвращения рекристаллизации  [c.185]

    Величина адсорбции красителя (ПАВ) из раствора может быть использована для оценки удельной поверхности порошков. При В11еде-нии 1 г активного угля в 100 мл водного раствора метиленового голубого концентрация красителя изменяется от начальной 1-10- моль/л до конечной равновесной 6- 10 моль/л. а прн добавлении 2 г угля такому же исходному раствору равновесная концентрация состгвила 4-10 моль/л. Считая, что адсорбция описывается уравнением. " [eHr-мюра. рассчитайте 5уд угля. Площадь, занимаемую молекулой красителя на иоверхности, примите равной 0,65 нм , [c.72]

    Значение удельных поверхностей можно определять также по теплотам смачивания, по адсорбции красителей из растворов, по вычислению интегральной Рис. 3. З-образнад изотерма работы сорбции пара И Т. Д. адсорбции. [c.42]

    На рис. 2,18 представлена изотерма адсорбции метиленовой сини на саже сферой из водного раствора при 20 °С [30]. По величине адсорбции, соответствующей горизонтальному участку, легко определить удельную поверхность адсорбента, если известен размер площадки, приходящейся на одну молекулу красителя. При горизонтальной ориентации на поверхности молекула метиленовой сини должна занимать площадку 135 А , при вертикальной — 75 А . В действительности площадка, приходящаяся на одну молекулу метиленовой синп, при адсорбции на углеродистых поверхностях (графите, графитированной, и неграфитиро-ванной саже) колеблется от 78 до 130 А . [c.54]

    Осветляющие угли предназначены для поглощения относительно крупных молекул или микросуспензий из жидких сред. Они отличаются развитой переходной пористостью удельная поверхность переходных пор составляет в среднем около 140—150 м /г. Для применения в фармацевтической промышленности применяют осветляющий уголь, получаемый на основе древесины путем парогазовой активации. После активации уголь подвергают измельчению в порошок. Особое внимание в этом случае обращают на зольность угля и состав золы. Так, общее содержание соединений железа в угле, применяемом для фармацевтических целей, не должно превышать 0,05%. Если древесный уголь применяют для осветления различных пищевых продуктов, допускается содержание соединений железа (в пересчете на Fe) до 0,2%. Другой порошкообразный осветляющий уголь марки ОС используют для удаления из жидкостей высокомолекулярных красителей и смолистых примесей. [c.91]

    Хотя применение активных углей для очистки сточных вод от ПАВ и сопутствующих загрязнений обеспечивает практически полное удаление из воды этих загрязнений, однако их использование ограничивается тем, что активные угли характеризуются относительно низкой сорбционной емкостью по ПАВ вследствие того, что большая часть их пористости образована недоступными для мицелл ПАВ и красителей микропорамн, а доля доступных для мицелл переходных пор невелика. Наши данные, в частности, показывают, что микропористые угли КАД и АГ имеют емкость по ПАВ всего 2%, хотя эффективные удельные поверхности, рассчитанные с учетом объема микро- [c.255]

    Адсорбция из растворов. Альтернативой адсорбции азота является адсорбция красителя метилового красного из органического растворителя. Однако проведение такой адсорбции из раствора требует большего времени [177, 178]. Краситель адсорбируется только на полностью гидроксилированной поверхности кремнезема, т. е. в присутствии воды, и высушивается при умеренной температуре. Каутски и Михель [179] использовали адсорбцию флуоресцентного красителя, такого, как родамин В. При адсорбции в виде катионов краситель дает розово-красную флуоресценцию, но если краситель находился не в ионизированном состоянии, то окраска была голубоватокрасной. Подобный метод полезен для определения удельной поверхности полностью гидроксилированного золя кремнезема, поскольку краситель может быть адсорбирован из воды. [c.479]

    В. Слоисто-ленточные минералы. Слоисто-ленточные минералы (полыгорскит и сепиолит) представлены ленточными пакетами (по минералогической классификации — структура 2 1). Более предпочтителен для сорбционных целей палыгор-скит, который обладает развитой вторичной пористой структурой с микропорами прямоугольного сечения размером 0,37 х 1,10 нм, которые образуются при соединении ленточных пакетов. При обезвоживании структура палыгорскита изменяется, и каналы минерала приобретают размеры 0,37 х 0,64 нм. В це-олитных каналах палыгорскита, в соответствии с их размерами, может адсорбироваться вода, азот, аммиак, метанол. Углеводороды, поверхностно-активные вещества, красители адсорбируются из воды во вторичном пористом пространстве пачек, в которые агрегируются брусоподобные или волокнистые частицы минералов. В отличие от монтмориллонита, поверхность и объем вторичных пор палыгорскита довольно велики, что и обусловливает его высокие сорбционные свойства по углеводородам (сорбционная емкость по гексану достигает 0,29 см /г). Он эффективен при сорбции высокомолекулярных соединений. Удельная поверхность по воде для палыгорскита превышает 300 м /г. [c.378]

    Однако, чтобы дать сравнительную оценку задерживающей способности различных тканей, прибегают к методу фильтрования через них в одинаковых условиях одной и той же стандартной суспензии, не меняющей своих свойств в зависимости от времени . В качестве стандартных суспензий лучше всего использовать суспензии с частицами правильной формы, желательно сферических, например суспензию эмульсионного полистирола, частицы которого имеют правильную шарообразную форму. Твердая фаза стандартной суспензии не должна адсорбироваться тканью, но должна иметь одноименный с последней заряд поверхности в среде суспензии ( -потенциал). Так как большинство использующихся в практике материалов, из которых изготовлены фильтровальные ткани, имеют отрицательный -потенциал то стандартная суспензия должна иметь также отрицательно заряженные частицы. Это особенно важно в случае высокодисперсных суспензий, имеющих большую удельную поверхность, для которых влияние поверхностных сил более значительно, чем для суспензий с незначительной удельной поверхностью. Для суспензий органических красителей, размер частиц которых колеблется от десятых долей микрона до нескольких микрон, очень трудно подобрать стандартную суспензию со сферической формой частиц в качестве таковой используются суспензии пигментов, имеющие отрицательный -потенци-ал и исходные частицы неправильной, по близкой к округлой формы ". При фильтровании такп, суспензий [c.168]

    В качестве адсорбатов для оценки удельных поверхностей широко используются также красители. Популярность этого метода обусловлена прежде всего простотой колориметрического определения концентрации красителя в растворе. Обычно адсорбция красителей описывается уравнением Лэнгмюра, однако она может быть и полимолекулярной. Кроме того, адсорбция красителей может зависеть от состава раствора и состояния поверхности. Так, по данным Колтоффа и Мак-Невина [52], изучавших адсорбцию фиолетового красителя для шерсти, удельная поверхность сульфата бария [c.320]

    Индий, соосаждающийся после выделения СиЗ в виде твердой фазы, также должен равномерно распределяться в виде Си1пЗа из-за чрезвычайно большой пористости СиЗ и возможности взаимодействия иона 1п + практически со всей массой СиЗ. Исключительно большая удельная поверхность осадков сульфидов была определена по сорбции поверхностноактивных красителей [12—15], изотопному обмену между ионами в растворе и твердой фазе сульфида, а также на основании электронно-микроскопических снимков [16]. [c.270]

    Наиболее убедительное доказательство необычной растворимости маленьких частиц твердых веществ представили Мей и Кольтгоф , определявшие растворимость хромата свинца различной степени измельчения. Во избежание сомнительных моментов, связанных с измерением электропроводности, эти авторы проводили химический анализ раствора. Чтобы показать, что примеси не оказывают какого-либо значительного влияния, авторы определяли как ионы свинца, так и хромат-ионы, а также устанавливали растворимость при различных количествах находящегося в осадке твердого вещества. Мей и Кольтгоф показали, что пересыщение быстро исчезало (в пределах 20 сек) при встряхивании пересыщенного раствора с постаревшим хроматом свинца. Определение растворимости проводилось с тремя различными образцами 1) состаренным осадком 2) свежепо-лученным из кислого раствора осадком 3) свежеосажденным продуктом, состоящим из очень мелких частиц. Радиусы частиц были рассчитаны из величины удельной поверхности (площадь на 1 г), измеренной методами адсорбции красителя и изотопного обмена. Из табл. 16 видно, что во всех трех случаях конечная величина растворимости продукта одинакова, хотя в первые несколько минут свежеосажденный образец имеет значительно более высокую растворимость. В течение этих первых минут происходит рост частиц таким образом, повышенная растворимость является лишь временным явлением. [c.143]

    ПанетЗ. 4 исследовал обмен между торием В (встречающийся в природе радиоактивный изотон свинца) и сульфатом свинца с целью измерения удельной поверхности осадка. Кольтгоф и Розенблюм в ряде своих статей описывают результаты сравнительного исследования методов, основанных на адсорбции красителей и на применении радиоактивного изотопа авторы наблюдали процесс старения сульфата свинца в самых различных условиях. [c.183]

    Определение удельной по[ ерхносги может быть также осуществлено путем адсорбции красителя, если поверхность покрывает один слой красителя. Площадь, покрытая одной молекулой красителя, устанавливается сравнением с данными, полученными при применении изотопного обмена, или непосредственным измерением размеров хорошо развитых кристаллов. Так, было показано, что фиолетовый краситель для шерсти 4ВЫ адсорбируется на поверхности сульфата свинца в соотношении 1 анион красителя на 1,5 иона свинца на поверхности 5. При адсорбции на хромате свинца соотношение составляло 1 анион красителя на 2 иона свинца на поверхности Однако здесь следует заметить, что площадь, покрытая молекулой красителя, иногда зависит от заряда поверхности. Так бромид серебра адсорбирует из раствора, содержащего избыток ионов серебра, в два раза больше красителя шерстяного фиолетового или метиленового синего, чем из раствора, содержащего избыток бромид-ионов [c.184]


Смотреть страницы где упоминается термин Красители удельной поверхности: [c.135]    [c.224]    [c.49]    [c.648]    [c.648]    [c.570]    [c.10]    [c.321]    [c.324]    [c.325]    [c.321]   
Химия кремнезема Ч.1 (1982) -- [ c.646 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность удельная



© 2025 chem21.info Реклама на сайте