Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянные дипольные моменты молекул и радикалов

    Все многообразие зависимостей поверхностного натяжения от концентрации может быть представлено кривыми трех типов (рис. 43). Для поверхностноактивных веществ (ПАВ) характерны кривые типа 1. ПАВ менее полярны по сравнению с растворителем, обладают меньшим, чем растворитель, поверхностным натяжением. Интенсивность взаимодействия молекул растворителя с молекулами ПАВ меньше, чем молекул растворителя между собой. По отношению к воде, полярному растворителю, поверхностно-активными веществами являются органические соединения, состоящие из углеводородного радикала (гидрофобная или олеофильная часть) и полярной группы (гидрофильная часть) карбоновые кислоты, их соли, спирты, амины. Такое дифильное строение молекулы является характерным признаком ПАВ. Углеводородные цепи, не имеющие постоянного дипольного момента, гидрофобны, взаимодействуют с молекулами воды слабее, чем между собой, и выталкиваются на поверхность. Поэтому органические вещества, не обладающие полярной группой (например, парафины, нафтены), в воде практически нерастворимы. Полярные группы типа —ОН, —СООН, —NH и др. обладают высоким сродством к воде, хорошо гидратируются, и наличие такой группы в молекуле обусловливает растворимость ПАВ. Таким образом, растворимость ПАВ в воде зависит от длины углеводородного радикала (растворимость уменьшается с увеличением длины в гомологическом ряду). Например, карбоновые кислоты i — С4 неограниченно растворяются в воде растворимость кислот С5 — С12 заметно падает с ростом числа С-атомов, а при длине углеводородной цепи более i2 они практически нерастворимы. Увеличение длины углеводородного радикала молекулы ПАВ на одну СНа-группу приводит к увеличению поверхностной активности в 3,2—3,5 раза (это правило называется правилом Дюкло — Траубе). [c.205]


    Рассмотрение координационной связи на основе метода молекулярных орбиталей не требует введения каких-либо новых понятий. Неэмпирические расчеты были проведены для ВНз-МНз, молекулы, которую можно сопоставить с изоэлектронной ей ковалентной молекулой этана [4]. Расчет энергии диссоциации на ВНз и ЫНз дает значение 123 кДж-моль , что составляет одну треть энергии диссоциации этана на два метильных радикала. Силовая постоянная для валентного колебания В—N равна половине силовой постоянной для связи С—С. Рассчитанный дипольный момент комплекса велик (5,7 Д), что связано с переносом примерно половины заряда электрона от ам-миака к борану. [c.360]

    Растворяющая способность полярных растворителей по отношению к компонентам масляных франций обусловлена не только значением их дипольного момента, зависящего от фу нкциональной группы при углеводородном радикале, но и структурой самого радикала,-определяющего величину дисперсионных сил растрорите-ля."Веяние Длины углеводородного радикала при одной.-и той же функциональной группе в молекуле растворителя показано ниже [13] на примере растворения масда 8АЕ-10 в ряде кетонов при постоянном соотношении кетона и масла (2 1)  [c.54]

    Весьма трудно предугадать знак поверхностного потенциала в случае адсорбции радикалов на поверхности металла. Например, при адсорбции N2O или СО поверхностный потенциал будет зависеть от связи между адсорбатом и. металлом однако адсорбированный радикал так> се обладает дипольным моментом и может участвовать в процессах обмена зарядами с поверхностью металла. Так, в случае адсорбции СО на меди, когда поверхностный потенциал положителен, спектроскопические данные [109] указывают на образование координационной связи через кислород молекулы СО [88]. В этих условиях поверхностный потенциал, очевидно, частично создается постоянным дипольным мо.ментом молекулы СО, а частично — электронным взаи.модей-ствием с металлом. Для никеля, в случае которого поверхностный потенциал отрицателен, инфракрасный спектр молекулы СО, адсорбированной на восстановленном никеле, показывает, что связь СО с поверхностью при малых заполнениях осущест- [c.124]

    Если бы квантово-механическая теория химических связей была вполне совершенной, она должна была бы объяснить все отличия, которые имеются между различными связями. Ниже мы рассмотрим некоторые из попыток, которые делались в этом направлении укажем также на некоторые трудности, с которыми теория должна столкнуться в этих вопросах. Но и до этого следует указать, что во многих случаях некоторые из этих свойств с трудом поддаются определению. Так, например, во всех молекулах, кроме двухатомных, на энергию диссоциации связи сильно влияют атомы, находящиеся рядом с этой связьнэ. Таким образом, говоря об энергии связи С—С в этане, необходимо точно охарактеризовать состояние метильных групп после разрыва связи. Термохимическое измерение теплоты диссоциации этана на два метильных радикала дает значение энергии, необходимой для образования метильных радикалов, в их наиболее устойчивом состоянии, которое, по-видимому, является плоским. Но с теоретической точки зрения более целесообразно рассматривать энергию, требуемую для разрыва связи С —С без изменения длин связей С — Н и валентных углов в двух образую-. щихся метильных группах. Эти две энергии, вероятно, сильно отличаются одна от другой. Аналогично силовая постоянная связи в многоатомной молекуле определяется при анализе нормальных колебаний молекулы, но оказывается (за исключением, конечно, случая двухатомных молекул), что имеются взаимодействия между деформациями отдельных связей, которыми шкак нельзя пренебречь, что усложняет оценку силовой постоянной данной связи. На дипольный момент связи в многоатомной молекуле влияют поляризационные эффекты и другие взаимодействия с остальными связями, [юэтому выделить собственный), дипольный момент данной связи также уюжет быть затруднительно. Таким образом, уже перед тем, как приступить к созданию теории изменения химических связей между различными атомами, мы наталкиваемся на трудности в однозначной формулировке ( пактов, подлежащих объяснению. [c.366]



Смотреть страницы где упоминается термин Постоянные дипольные моменты молекул и радикалов: [c.408]   
Смотреть главы в:

Справочник по неорганической химии -> Постоянные дипольные моменты молекул и радикалов

Справочник по неорганической химии -> Постоянные дипольные моменты молекул и радикалов




ПОИСК





Смотрите так же термины и статьи:

Дипольные молекулы

Дипольный момент

Дипольный момент постоянный

Молекула дипольный момент



© 2025 chem21.info Реклама на сайте