Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент электрический, постоянный

    ПОЛЯРНАЯ СВЯЗЬ—химическая связь, характеризующаяся постоянным электрическим дипольным моментом вследствие несовпадения центров тяжести отрицательного заряда электронов и положительного заряда ядер. Большинство ковалентных, а также до- [c.201]

    Основные характеристики электрических свойств молекул, т. е. их поляризуемость и дипольный момент, определяются на основе измерения диэлектрической проницаемости, которую называют также диэлектрической постоянной Измерение показателя преломления вещества позволяет определять мольную рефракцию исследуемою вещества и делать на основе этой величины выводы о возможном строении молекул. [c.50]


    Третьей важной особенностью дисперсионных сил является их универсальность. Если для проявления кулоновских сил у взаимодействующих частиц необходимо наличие избыточных электрических зарядов, а для проявления ориентационных сил — наличие постоянного дипольного момента, то для дисперсионных сил подобные ограничения отпадают при достаточно тесном контакте дисперсионное взаимодействие возникает между любыми частицами — одинаковыми или различными, полярными или неполярными и т. п. Оно практически полностью определяет собой взаимное притяжение молекул в веществах с неполярными и со слабо поляризуемыми молекулами. [c.77]

    При индукционном взаимодействии в неполярной молекуле, характеризующейся нулевым значением постоянного дипольного момента, электрическое поле полярной молекулы может индуцировать диполь с моментом, не равным нулю. При этом неполярная молекула становится индукционно-полярной и между ними возникает индуцированное взаимодействие. Чем выше поляризуемость молекулы а, тем больше величина возникающего индуцированного момента. Индуцирование неполярной молекулы зависит от напряженности электрического поля полярной молекулы, а поэтому энергия Еут этого взаимодействия не зависит от температуры  [c.9]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]


    Дипольный момент служит главным образом для выяснения геометрической структуры молекулы. Если центры тяжести положительных и отрицательных зарядов молекулы не совпадают, молекула обладает постоянным электрическим диполь-иым моментом х, т. е. она полярна, Дипольный момент равен произведению заряда q (в ЭЛ.-ст. ед.) на расстояние между центрами зарядов (в А) /  [c.86]

    Диэлектрическая постоянная и дипольный момент. Трифторид бора электрически нейтрален и не обладает собственным дипольным моментом. Диэлектрическая постоянная при 0° и 760 мм равна 1,119 эл. ст. ед., а поляризация равна 8,36 [69]. [c.178]

    Векторная сумма всех индуцированных и постоянных дипольных моментов дает макроскопический электрический момент среды. Последний связан с поляризацией жидкого диэлектрика соотношением [c.116]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Электростатическое взаимодействие характерно для электрически заряженных частиц, в частности для полярных молекул. В последнем случае взаимодействие постоянных дипольных моментов называют ориентационным взаимодействием, при котором молекулы при сближении ориентируются наивыгоднейшим образом для обеспечения минимальной энергии системы. [c.94]

    Основные характеристики электрических свойств молекул — поляризуемость и дипольный момент — определяются на основе измерения диэлектрической постоянной. [c.534]

    Индукционные силы характеризуются постоянным электрическим полем, в результате действия которого электроны соседнего атома или молекулы поляризуются и дают индуцированный дипольный момент. Считают, что индукционные силы играют основную роль в адсорбции на оксиде алюминия. [c.69]

    При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникает индукционное притяжение, накладываемое на дисперсионное. [c.106]

    При помещении неполярной молекулы в электрическое поле происходит смещение зарядов друг относительно друга, что создает индуцированный (наведенный) дипольный момент р,,-. Вследствие существования собственного (постоянного, жесткого) диполь-ного момента цо полярная молекула стремится ориентироваться вдоль направления поля, сверх того, в ней, как и в неполярной, возникает наведенный момент. В этом и заключается поляризация молекулы. Количественную характеристику свойства молекулы поляризоваться, как и самое это свойство, называют поляризуемостью. [c.315]

    Под действием внешнего электрического поля молекула поляри-зуется.т. е. в ней происходит перераспределение зарядов и молекула приобретает новое значение дипольного момента. При этом неполярные молекулы могут превратиться в полярные, а полярные становятся еще более полярными. Иначе говоря, под действием внешнего электрического поля в молекулах индуцируется диполь, называемый наведенным или индуцированным. В отличие от постоянных и мгновенных наведенные (индуцированные) диполи существуют лишь при действии внешнего электрического поля. После прекращения действия поля наведенные диполи исчезают (экспериментальное определение величин постоянных и наведенных диполей см. стр. 188). [c.82]

    Второй эффект, обусловливающий возрастание емкости конденсатора, проявляется для полярных молекул, т. е. молекул, обладающих постоянным дипольным моментом [г. Электрическое поле стремится ориентировать молекулы соответствующими концами диполя в направлении положительной и отрицательной обкладок конденсатора. Этот эффект называют ориентационной поляризацией Р . Она тем значительнее, чем больше р,. Ориентационная поляризация зависит от температуры, так как нагревание, усиливая тепловое движение молекул, препятствует их ориентации. [c.189]

    Индуцированная поляризация проявляется и для веществ с постоянным дипольным моментом. Для последних надо, однако, принять во внимание, что макроскопическая поляризация постоянных диполей зависит от температуры, так как из-за теплового движения диполи отклоняются от направления, заданного электрическим полем. Для среднего момента постоянных диполей справедливо следующее выражение  [c.100]

    Как следует из предыдущего, возникновение инфракрасных спектров и спектров комбинационного рассеяния связано с электрическими свойствами молекулы — электрическим дипольным моментом и поляризуемостью. Поэтому уместно здесь же более подробно остановиться на этих свойствах, тем более, что определение постоянного дипольного момента может способствовать установлению геометрической конфигурации молекулы. [c.257]


    Возрастание емкости (в результате уменьшения силы электрического поля) вызывается не только наличием постоянного дипольного момента (а, присущего молекулам данного вещества, но и их деформацией под действием поля. Иными словами, под влиянием электрического поля происходит не только ориентация молекул полярного вещества (по направлению поля), но и возникновение дополнительного — наведенного (индуцированного) дипольного момента л. нд за счет смещения электронов (отчасти и ядер). [c.137]

    Если частицы вещества обладают постоянным дипольным моментом Ре, то на них в электрическом поле действует пара сил, стремящаяся развернуть электрический диполь по направлению поля (рис. 33) и равная [c.85]

    Согласно квантово-механической теории строения атомов и молекул, электроны в атоме пребывают в непрерывном движении, даже когда атом находится в основном состоянии. В результате этого нулевого движения все атомы обладают быстро изменяющимися дипольными моментами. Электрическое поле мгновенного диполя одного атома индуцирует дипольный момент в любом соседнем атоме и, как и в индукционном эффекте Дебая, относительные ориентации мгновенного момента и момента, индуцированного в другом атоме, всегда приводят к возникновению сил притяжения между двумя атомами. Другими словами, при сближении двух атомов, их электроны стремятся двигаться так, чтобы энергия понижалась. Лондон показал, что возникающие при этом силы достаточно велики для того, чтобы объяснить наблюдаемое вандерваальсово притяжение в газах, молекулы которых не имеют постоянных дипольных моментов. Он смог показать так-лсе, что во многих случаях, хотя и имеются постоянные дипольные моменты, эти силы более существенны, чем силы Дебая и Кеэзома. Эти силы оказались аддитивными. [c.385]

    Энергия адсорбции полярных молекул на неполярном адсорбенте. При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникаетиндук- ///ип/// ционное притяжение, которое добавляется к дисперсионному. В зависимости от положения и величины диполя в молекуле адсорбата и поляризуемости адсорбента энергия индукционного взаимодействия может достигать нескольких ккал/моль. [c.494]

    В начале шестидесятых годов О. Р. Лайд, определяя дапольный момент с помощью эффекта Штарка, нашел, что его величина для изобутана равна 0,132 В /88/, а для н-пропана - 0,0830/89/. Следует отметить, что определение электрического дипольного момента по Штарк-эффекту дает возможность измерять значения дипольного момента порядка 0,1-0,21) с высокой точностью (до 0,2%). Важно, что дпя метода Штарка несущественно даже значительное загрязнение газов, так как дпя измерения выбираются лишь те линии поглощения, которые принадлежат исследуемой молекуле /90/. Стало ясно, что молекулы алканов обладают постоянным электрическим дЬпольным мо-мштом. Постоянный дипольный момент молекул алканов существует благодаря неполной взаимной компенсации дипольных моментов отдельных С-С-и С-Н-связей /87/. [c.142]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Асимметричное распределение зарядов между отдельными частями молекулы обусловливает наличие постоянных дипольных моментов, которые существуют и в отсутствие внешнего поля. Наложение электрического поля вызывает образование вращательного момента у молекул, которые стремятся повернуться в направлении поля. В электрическом поле молекулы располагаются таким образом, что положительно заряженный полюс одной из них примыкает к отрицательному полюсу средней молекулы, и так до тех пор, пока молекулы не достигнут электрода той своей частью, котораяТ1ёсёт противоположный ему заряд. Это и есть ориентационная поляризация. [c.43]

    Индукционные силы. При растворении двух веществ, одно из которых поляр-iHoe, а другое неполярное, элекцричесяий диполь молекулы с постоян ным дипольным моментом может вызвать в неполярной молекуле сдвиг электронной плотности, ведущий к образованию индуцированного диполя ц,. Величина индуцированного диполя 01Пределяется - силой электрического поля Е полярной молекулы и способностью неполярной молекулы к поляризации а, т. е.  [c.70]

    Надо сказать, что электрический момент М состоит из двух взаи-мосвязанны частей. Векторная умма постоянных дипольных моментов равна. Разность М- обусловлена электронной и атомной поляризацией, которая возникает под влиянием поля наведенного спонтанным моментом М. Интересующая нас величина - представляет собой функцию < М >, которая имеет следующий вид  [c.125]

    Изотропные вещества в однородном электрическом поле большой напряженности обладают способностью к двулучепреломлению монохроматического линейно поляризованного луча света, распространяющегося перпендикулярно приложенному полю. Это явление было открыто в 1875 г. Керром в экспериментах со стеклом (прозрачное изотропное вещество), а также с жидкостями. Лишь в 1930 г. наблюдали эффект Керра в газах и парах. Таким образом, эффект Керра представляет электрооптическое явление, которое состоит в том, что изотропное вещество, помещенное в электрическое поле, приобретает свойство оптически одноосного кристалла с оптической осью, направленной вдоль приложенного поля, т. е. внешнее электрическое поле вызывает искусственную анизотропию вещества. Такое воздействие поля обусловлено тем, что анизотропные молекулы изотропного вещества под влиянием поля преимущественно ориентируются вдоль поля (рис. XIII.1). Наличие постоянного электрического дипольного момента молекул усиливает этот эффект. [c.234]

    Для электрических методов разрушения эмульсии характерны два случая первый — когда капли заряжены, второй — когда они электронейтральны, но приобретают дипольный момент, индуцируемый в постоянном или переменном электрическом поле. Таким образом, в эмульсиях, где частицы не заряжены, происходит коалесценция диполей. Это можно наблюдать визуально, если две капли поместить рядом друг с другом в электрическое поле с напряженностью Е канлн вскоре начнут притягиваться друг к другу. Для двух жидких сфер одинакового радиуса г с диэлектрической проницаемостью е, расстоянием между ними в масле I и диэлектрической проппцаемостью масла е силы иритяження составят  [c.69]

    Можно допустить, что поляризация вызывается электрическим двойным слоем, состоящим из электронов, расположенных на поверхности проводяпхего адсорбента, и соответствующих положительных зарядов, находящихся внутри металла. Величину дипольного момента, индуцированного в адсорбированных молекулах ПОЛ0М этого двойного слоя, можно найти по разности между теоретическим и фактически определяемым значением постоянной ао. Эта разность составляет слагаемое постоянной 02, которое возникает в результате действия диполя. [c.41]

    Согласно методу МО, переход к ионным связям сопряжен с тем, что в зависимости от коэффициентов С и сг вероятность нахожде ия электронов у одного из ядер оказывается выше, чем у другог . Вследствие этого в молекулах электрический заряд распределен неравномерно, и в них появляется так называемый дипольный момент (произведение расстояния между центрами зарядов на заряд х = е/). При измерении дипольного момента всегда надо иметь в виду, что существует различие между постоянным и индуцированным (наведенным) дипольным моментом. [c.99]

    Строение двойного электрического слоя у частиц с постоянным дипольным моментом. Н. А. Толстой с сотр. показали, что существуют коллоидные частицы с электрической дипольной структурой, образующиеся вследствие самопроизвольной униполярной ориентации адсорбированных на их поверхности диполей дисперсионной среды (например, Н2О, 0Н и т. д.) или вследствие ориентации полярных групп самого вещества частиц. Подобные частицы, как показали различные электрооптические методы исследования, обладают жестким большим электрическим моментом (тысячи и миллионы дебаев). Так, перманентная ди-польня я структура обнаружена у пятиокиси ванадия, у частиц суспензий глйны, гуминовых золей, суспензий ряда красителей и некоторых бактерий и вирусов. Можно с достаточной уверенностью сказать, что подобные дипольные структуры, привлекшие в последнее время особое внимание исследователей, широко распространены в коллоидных и биологических системах. [c.190]

    Частицы золя могут иметь постоянный дипольный момент. При определении диэлектрической проницаемости в электрическом поле диполи ориентируются, вследствие чего увеличивается поляризация и возрастает значение е. Этот эффект обычно незначителен у типичнь х коллоидных систем, частицы которых, как правило, не имеют постоянного дипольного момента. У растворов-же высокомолекулярных соединений, молекулы которых могут обладать постоянным дипольным моментом, этот эффект может приводить к значительному увеличению диэлектрической проницаемости. [c.222]

    Единицей дипольного момента является дебай (Д) 1 Д = 3,33564X Кл-м (1-10 эл.-ст. ед.-см). Дипольный момент многоатомной молекулы приближенно равен векторной сумме дипольных моментов связей или атомных групп в молекуле с учетом валентных углов. Полярные и неполярные молекулы, попадая во внешнее статическое электрическое поле, создаваемое между заряженными обкладками конденсатора, ведут себя неодпнаково. Полярная молекула стремится ориентироваться в поле по направлению его линий так, чтобы центр тяжести положительных зарядов был направлен к отрицательному, а отрицательных — к положительному полюсу поля. Такое положение молекулы отвечает минимуму потенциальной энергии и наибольшей устойчивости. Неполярная молекула в электрическом поле не ориентируется. Под воздействием электрического поля центры тяжести зарядов молекул любого вещества смещаются друг относительно друга на некоторое расстояние. Смещение зарядов полярной молекулы несколько увеличивает постоянный дипольный момент и способствует превращению неполярной молекулы в электрический диполь с наведе[)ным (индуцированным) дипольным моментом Ципд- Принимают, что под действием не слишком больших полей индуцированный дипольный момент прямо пропорционален напряженности Е эффективного электрического поля внутри диэлектрика. Величина Е равна разности напряженности поля зарядов на обкладках конденсатора Eq и напряженности поля поверхностных зарядов индуцированных диполей , так как эти поля имеют противоположные направления. Величина р,ннд определяется уравнением [c.5]

    Уравнение Клаузиуса — Мосотти не отражает зависимость мольной поляризации от температуры. И действительно, имеется много веществ, для которых такая зависимость отсутствует. Среди газов к таким веществам относятся Н , Мо, О2, все углеводороды симметричного строения метан, этилен, ацетилен, бензол и т. д. Однако имеется весьма много веществ, для которых мольная поляризация зависит от температуры. Например, для аммиака при Т = 292,2° К Р = 57,57 см 1моль при Т = 466,0° К Я = 39,59 см 1моль. Для второй категории веществ характерно именно уменьшение мольной поляризации с повышением температуры. П. Дебай связал этот факт с наличием у таких молекул дипольного момента и в отсутствие внешнего электрического поля. Происхождение такого постоянного дипольного момента объясняется природной асимметрией молекулы. При внесении вещества, состоящего из полярных молекул, в электрическое поле возникающая поляризация связана с двумя причинами  [c.258]

    Чем сильнее поляризованность вещества при заданном значении напряженности электрического поля, тем выше его диэлектрическая постоянная. Связь между величиной диэлектрической постоянной и величинами поляризуемости частиц вещества и их дипольным моментом дается уравнением Клаузиуса — Мосотти, которое в системе един1щ СИ записывается в виде [c.86]


Смотреть страницы где упоминается термин Дипольный момент электрический, постоянный: [c.347]    [c.22]    [c.216]    [c.56]    [c.62]    [c.70]    [c.193]    [c.126]    [c.268]    [c.193]    [c.248]    [c.256]    [c.352]    [c.84]   
Спектры и строение простых свободных радикалов (1974) -- [ c.55 , c.58 , c.155 ]

Спектры и строение простых свободных радикалов (1974) -- [ c.55 , c.58 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Дипольный момент постоянный



© 2025 chem21.info Реклама на сайте