Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амид общий механизм образования

    Общий механизм образования тиоэфиров, сложных эфиров 1И амидов [c.135]

    Реакция ароматических соединений с дизамещенными фор-мамидами в присутствии оксихлорида фосфора, называемая реакцией Вильсмейера или Вильсмейера — Хаака, представляет собой наиболее общий метод формилирования ароматических колец [262]. Однако она применима только к таким активным субстратам, как амины и фенолы. Ароматические углеводороды и гетероциклические соединения тоже подвергаются формили-рованию, но лишь в том случае, если они намного более реакционноспособны, чем бензол (например, азулены, ферроцены). И хотя наиболее широко используется М-метил-М-фенилформа-мид, другие арилалкил- и диалкиламиды также находят применение [263]. Вместо Р0С1з можно брать СОСЬ. Реакция проведена и с амидами других кислот, что приводит к образованию кетонов (в действительности это пример реакции 11-15), но это случай редкий. Атакующей частицей [264] выступает ион 26 [265], а механизм, по-видимому, может быть изображен следующей схемой  [c.360]


    Аминохинолины. Наиболее удобный путь получения 2-аминохинолина заключается в аминировании хинолина амидом натрия [494] в инертном растворителе. Эта общая реакция была рассмотрена Леффлером [495], причем был обсужден ее механизм и применимость к производным пиридина (т. 1, стр. 314 и 424). В первых работах по применению этого метода отмечаются низкие выходы 2-аминохинолина, а также имеется указание об образовании некоторого количества побочного продукта—2,3 -дихинолина в результате соединения двух хинолиновых циклов. [c.113]

    Последовательности реакций, показанные в уравнениях (7-29) и (7-30), представляют собой общий механизм, используемый клетками для присоединения карбоновых кислот к—ОН",—SH-и—МНа-группам. Например, последовательность реакций (7-30) используется при образовании молекул аминоацил-тРНК, необходимых для синтеза белков. Механизм этих реакций показан в табл. 7-2. В зависимости от типа образующегося соединения (тиоэфир, сложный эфир или амид) реакции обозначены как S1A, S1B или SI . Символы а и y указывают, в каком месте происходит расщепление АТР при Р или при Pv Например, образование ацетил-СоА у эукариотов протекает по механизму SlA(a). Понятно, что эта последовательность включает гидролиз неорганического пирофосфата (Pi i) до неорганического фосфата (Pi), роль которого в сопряжении реакции расщепления АТР с биосинтезом рассмотрена ниже (гл. 11, разд. Б,2). [c.135]

    Постулировалось, что на начальной стадии [реакция (9)] арилгалогенид захватывает электрон. Образующийся анион-радикал диссоциирует на арил-радикал и иодид-ион [реакция (10)]. Затем арил-радикал реагирует с амид-ионами с образованием нового анион-радикала [реакция (И)], который путем переноса электрона на субстрат—арилиодид — дает продукт замещения и анион-радикал субстрата [реакция (12)]. Реакции (10) —(12) представляют собой стадию развития цепи данного механизма. Суммируя реакции (10) —(12), получим общее уравнение процесса нуклеофильного ароматического замещения [реакция (13)]. Однако не следует забывать о том, что в нем все же в качестве интермедиатов участвуют радикалы и анион-радикалы. [c.12]

    Аналогичные эксперименты свидетельствуют об обратимом образовании тетраэдрических интермедиатов в гидролизе других сложных эфиров, амидов, ангидридов и хлорангидридов на основании этих данных был предложен общий механизм нуклеофильного замещения по ацильной группе (см. выше). [c.645]


    В четвертом издании сохранены методические принципы и классификация по структуре углеродного скелета. Внесены некоторые изменения в последовательность изложения так, в I части рассматриваются не только ациклические, но и алициклические углеводороды, а затем их производные. Целесообразность изучения особенностей образования карбоциклов, теории напряжения, конформаций циклогексанового кольца, геометрической изомерии замещенных циклов и т. п. до рассмотрения ангидридов дикарбо-новых кислот, циклических форм моносахаридов, а также циклических эфиров и амидов, соответственно, гидрокси- и аминокислот и т. п. очевидна , а свойства функциональных групп в ациклических и алициклическнх соединениях достаточно сходны. Во II части описаны ароматические карбоциклы (арены) и их производные. Это дает возможность более четко выделить особенности ароматической группировки бензольного кольца и ее влияния на связанные с ней функциональные группы. Амиды карбоновых кислот рассматриваются в гл. XII в сопоставлении с аминокислотами, пептидами, белками. После углеводов выделена самостоятельная гл. X — Терпены, каротиноиды и стероиды. В гл. VII раздел о жирах дополнен общими представлениями о липидах и, в частности, характеристикой фосфатидов. В книге расширены представления о способах разрыва ковалентных связей, о механизмах реакций замещения и присоединения. [c.4]

    Механизм такой перегруппировки изучен недостаточно, поэтому не всегда можно указать, какие именно атомы водорода мигрируют и в каком порядке. Заметим, что общим для рассматриваемого типа является смещение двух атомов водорода, превращение акцепторной группы в донорную и образование устойчивых радикалов аллильного типа. Фрагментация типа О характерна для циклических амидов, например  [c.83]

    Образование ионов с mje 56, 71, 84, 112 и 126 (см. стр. 94, 95) в случае Ы-этил-Ы-ацетилциклогексиламина XLI можно объяснить аналогично описанному выше для Н-этил-Н-ацетилцикло-пентиламина XL, исходя из механизма распада, установленного на примере соответствующего основания. Из трех остальных пиков (т/е 43, 72, 88), общих для обоих спектров, первый (т/е 43) в основном обусловлен ионом ацетила [6], тогда как присутствие в спектрах пиков с т/е 72 и 88, по-видимому, вызвано миграцией атома водорода циклоалкильного кольца к карбонильной группе, т. е. процессом, который не имеет особого значения в случае алифатических амидов. Возможный механизм образования этих двух фрагментов представлен следующей схемой  [c.110]

    В предшествующих главах процессы полимеризации рассматривались главным образом с кинетической точки зрения. Обращаясь к обсунл-дению механизма регулирования структуры цепи, мы остановимся сначала на пространственной изомерии в полимерах винильного ряда, затрагивая отчасти диеновые полимеры. Наряду с более простыми ионными системами ( 1) некоторое внимание будет уделено процессам с участием переходных металлов ( 2), которые пока не приобрели общего значения при стереоспецифи-ческой полимеризации полярных мономеров. Специально будут рассмотрены структурные аспекты полимеризации ненасыщенных карбонильных производных и амидов ненасыщенных кислот ( 3), для которых возможно протекание реакции образования макромолекул в принципиально различных направлениях. [c.240]

    Возможен еще один путь образования сложных эфиров. Присоединение натриевой соли или эфира аминокислоты к смешанному ангидриду, полученному из фенилуксусной кислоты и изобутилового эфира хлоругольной кислоты, не привело к образованию амида, но вместо этого с прекрасным выходом был выделен изобутиловый эфир фенилуксусной кислоты [ПЗ]. Образование этого продукта может явиться результатом видоизмененной реакции Дакина — Уэста, в которой сложный эфир получается вместо кетона. Общий механизм, который предложил для реакции Дакина — Уэста Кинг и Мак-Миллан [П4, П5], легко объясняет такое толкование этой реакции, хотя внутримолекулярная реакция через промежуточное образование четырехчленного цикла, как это показано ниже, кажется более вероятной. [c.194]

    Общий вывод, что для транс-амидов характерно образование линейных полимеров, а для г ис-амидов — циклических димеров, был поставлен под сомнение работой Дейвиса и Томаса [502]. Они нашли, что циклические димеры имеются как в трихлорацетамиде, так и в его N-метилпроизводном. Дейвис отмечает, что тип ассоциации определяется относительной величиной свободной энергии, которая может изменяться в зависимости от других структурных факторов, нежели цис-транс-томеряя. Бейкер и Егер [118] опубликовали интересное обсуждение диэлектрических свойств некоторых твердых полиамидов. Они установили соответствие между изменениями диэлектрической постоянной и диэлектрических потерь, с одной стороны, и протяженностью и упорядоченностью сети Н-связей — с другой. Диэлектрическая постоянная и потери велики в соединениях, для которых можно допустить, что сеть плохо сформирована либо из-за неблагоприятных расстояний между амидными группами, либо из-за нарушений порядка вследствие замыкания Н-связей кроме того, величина указанных диэлектрических характеристик быстро растет с увеличением температуры. Последнее Бейкер и Егер приписывают осцилляции водородных атомов между двумя положениями равновесия на линии Н-связи. Другие механизмы диэлектрических потерь также становятся существенными при более высоких температурах, при которых Н-связи рвутся и теряется их ориентирующее действие. Бейкер и Егер показали, что соединения, образующие сильную Н-связь (НгО), разрушают сетку Н-связей и вызывают изменения диэлектрических свойств, подобные тем, которые наблюдаются при повышении температуры. Такая эквивалентность разрыва Н-связей с помощью химических и термических воздействий является типичной и была обнаружена многими экспериментальными методами. [c.27]


    Основные усилия органиков направлены на подробное исследование физических свойств молекул и способов их взаимодействия. Эти сслвдо вания можно разделить на три тесно примыкающие общие группы. Во-первых, это изучение структуры молекул их формы и размера, направления и напряжения связей, электронных и спектральных эффектов, присутствия или отсутствия резонанса и эффекта стабилизации резонансом. Во-вторых,. это изучение кинетики скоростей взаимодействия молекул и влияния на них структурных факторов и внешнего окружения. В-третьих, это исследование механизмов реакций — область, в значительной степени охватывающая две предыдущие. Во всех описанных в этой главе сложных превращениях — окислении спиртов, образовании амидов, ангидридов и сложных эфиров, а также при всех реакциях, представленных ка рис. 21.27, должно происходить определенное число сложных атомных перегруппировок при переходе одних соединений в другие. Важная задача органической химии состоит в разработке теорий, позволяющих понять детали многостадийных процессов, посредством которых молекулы сталкиваются и взаимодействуют с образованием новых веществ. Мы рассмотрим некоторые из них в гл. 22 и 23. [c.168]

    Во всех цитированных выше работах авторы, к сожалению, не выходят за рамки констатации самого факта протекания той или иной реакции и выяснения наиболее общих закономерностей этих реакций. Информация о механизме исследованных реакций отсутствует. Реакции переамидирования играют важную роль в реакциях образования как in vitio, так и, по-видимому, in vivo природных макромолекул, содержащих амидную связь, — белков. В зтом случае реакции переамидирования обычно называют реакциями транс-пептидации, т. е. реакциями межцепного обмена с участием пептидной связи. Реакции транспептидации совершенно аналогичны реакциям (V.8), (V.9) и (V.10). Их особенностью является то, что они протекают в водных средах, где пептидные связи могут подвергаться гидролизу. Обычно реакции гидролиза пептидных связей протекают под действием ферментов. Однако было показано, что под действием протеолитических ферментов могут протекать не только реакции гидролиза, но и реакции транспептидации. Эти факты свидетельствуют в пользу того, что переходное состояние в реакциях гидролиза амидов и в реакциях транспептидации является сходным. Это в свою очередь означает, что выводы о механизме реакций обмена производных карбоновых кислот [реакции (V.3) и (V.4)], сделанные на основании исследований главным образом реакций гидролиза сложных эфиров и амидов, следует считать корректными. [c.178]

    Существует множество широкоизвестных химических явлений, которые могли бы быть более или менее точно описаны посредством приближений, рассмотренных в общих чертах в этой главе, хотя вряд ли найдется хоть один химик, который бы рассматривал их все как проявление единого механизма взаимодействия. К этим явлениям относятся осаждение ароматических соединений в виде твердых комплексов с нитроароматическими соединениями типа пикриновой кислоты образование в растворе или в твердом состоянии комплексов, обладающих новой полосой поглощения, отвечающей переносу заряда образование комплексов между карбонильными соединениями и акцепторными молекулами (типа аддуктов иода с амидами) существование иона 1з и ряда комплексов типа иод — пиридин синие иод-крахмальные комплексы комплексы иона серебра с олефинами взаимодействия между флавинами и производными индола в растворе и в твердом состоянии появление неспаренных электронов и электропроводности в определенных комплексах типа комплекса тетраметилфенилендиамина с хлор-апилом существование координационных связей в окисях аминов, аддуктах трехфтористого бора с четвертичными аминами и в других подобных соединениях и, наконец, даже водородная связь. Все эти явления можно описать как перенос заряда или образование донорно-акцепторных или молекулярных комплексов, и все они в некотором смысле взаимосвязаны. [c.332]

    Баннет и Дэвис [310] предпочитают механизм 3, так как он объясняет наличие общего основного катализа при аминолизе эфиров и отсутствие его в реакциях аминов с 2,4-динитрохлорбензолом. Равновесное образование промежуточ1ного продукта присоединения по пути 3 аналогично образованию оксимов и семикарбазонов из альдегидов [70]. Далее третий механизм объясняет весьма низкую реакционную способность эфиров карбоновых кислот по отношению к амидам щелочных металлов в жидком аммиаке (так как в этой среде отсутствует подходящая обобщенная кислота). Механизм 3 объясняет по принципу микроскопической обратимости, почему реакция, обратная аминолизу эфиров — алкоголиз (или гидролиз) амидов, должна катализироваться обобщенным основанием по первому механизму. Реакция алкоголиза катализируется основаниями, но вопрос [c.125]


Смотреть страницы где упоминается термин Амид общий механизм образования: [c.194]    [c.107]    [c.81]    [c.101]    [c.104]    [c.99]    [c.706]    [c.399]   
Биохимия Том 3 (1980) -- [ c.135 , c.136 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм образования АТФ



© 2025 chem21.info Реклама на сайте