Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ион-парная хроматография органических растворителе

    Однако наиболее часто применяют ион-парную хроматографию на обращенной фазе, при которой в качестве подвижной фазы используют водный буферный раствор и органический растворитель, смешивающийся с водой, обычно метанол или ацетонитрил. В подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, а в качестве сорбента используют силикагель с химически привитой фазой, обычно Се или i8. Иногда разделение осуществляют с применением несмешиваемой с водой механически удерживаемой фазы, например, бутанола. При разделении на обращенной фазе более стабильной, чем механически удерживаемая фаза, водные образцы могут непосредственно вводиться в колонку, что особенно важно для анализа биологических образцов. При этом нет необходимости в предварительной очистке, так как гидрофильные компоненты мгновенно вызываются из колонки. Градиентное элюирование проводят, изменяя концентрацию противоиона в подвижной фазе или меняя полярность растворителя. При изменении концентрации противоиона, который остается в неподвижной фазе, изменяется сила растворителя, а при изменении pH подвижной фазы изменяется селективность разделения. [c.75]


    В случае обращенно-фазной хроматографии силу растворителя увеличивают, повышая содержание в элюенте органической составляющей (метанола, ацетонитрила или ТГФ) и уменьшают, добавляя больше воды. Если не удается добиться желаемой селективности, используют другую органическую составляющую либо пытаются изменить ее с помощью разных добавок (кислот, ион-парных реагентов и др.). [c.13]

    Применяемые в ионообменной хроматографии сорбенты менее эффективны и стабильны, а также менее воспроизводимы. Улучшить эффективность разделения ионогенных соединений можно, повысив температуру до 60 °С, изменив pH, добавив органический растворитель или перейдя от ионообменной хроматографии к работе в режиме ион-парной хроматографии или обращенно-фазной хроматографии с использованием метода подавления ионов. [c.39]

    При приготовлении подвижных фаз для ион-парной, обращенно-фазовой или ионообменной хроматографии получение необходимой молярной концентрации компонентов не вызывает затруднений, в то время как установка необходимого значения pH водноорганических элюентов может быть связана с затруднениями. В связи с этим принято указывать значения pH не для элюента в целом, а для его водной части, до смешения с органическим растворителем. Следует иметь в виду, что прибавление к водному буферному раствору органического растворителя может увеличить кажущееся значение pH на Г—2 единицы, в результате чего смешанный водно-органический элюент станет довольно агрессивным по отношению к химически модифицированным силикагелям. [c.312]

    Иногда также применяют комбинацию двух больших ионов. В образующейся ионной паре заряженные группы могут оказаться спрятанными столь глубоко, что такую пару можно будет экстрагировать очень неполярными растворителями. Такая ситуация представляет больший интерес применительно к нормально-фазовой ион-парной хроматографии, а не обращенно-фазовой, поскольку в первом случае выбор подходящего органического растворителя менее ограничен. [c.125]

    Влияние органических модификаторов подвижной фазы. В обращенно-фазовой ион-парной хроматографии органические модификаторы элюента могут влиять как на удерживание, так и на селективность. Изотерму распределения противоионов, а следовательно, и удерживание более всего определяет количество добавленного модификатора. Растворимость ионов-модификаторов в подвижной фазе представляет собой второстепенный фактор. Для растворения в подвижний фазе достаточных количеств больших ионов-модификаторов может потребоваться высокое содержание органического растворителя в подвижной фазе. В принципе тип органического растворителя можно использовать в качестве пара.метра для оптимизации обращенно-фазовой ион-парной хроматографической системы. Однако вследствие широкого выбора других параметров эта возможность еще широко не исследовалась. [c.126]


    ТСХ-пластины для распределительной ТСХ с химически связанными фазами имеют преимущества перед импрегнирован-ными не требуется насыщения элюента неподвижной фазой, разделяемые вещества не загрязняются неподвижной фазой, характеризуются более воспроизводимыми величинами / /, меньше влияют на результаты остаточные силанольные группы. Пластины для тех с диольной химически связанной фазой по хроматографическим свойствам близки к пластинам с немодифицированным силикагелем. Однако адсорбционная активность гидроксилов, а следовательно, и удерживание на диольных пластинах слабее. Элюенты для ТСХ на диольных и обычных силикагелевых пластинах близки по составу. Это обычно органические растворители с добавками кислот или оснований. Пластины для ТСХ с нитриль-ными группами в зависимости от используемых элюентов могут быть применены как для прямофазной, так и для обращенно-фазовой с разным порядком элюирования разделяемых соединений. Эти сорбенты могут также применяться для ион-парной хроматографии. ТСХ-пластины с аминогруппами являются слабоосновным ионообменником. Эти пластины можно применять для разделения веществ с разными суммарными зарядами ионизированных групп и различающихся гидрофобностью заместителей [c.344]

    Комплексообразование лежит в основе и жидкостной ион-парной хроматографии, основанной на принципах ион-парной экстракции. В качестве ионов-модификаторов используют те-траалкиламмоний (NR4), алкилсульфонат (К80з), перхлорат (СЮ -) и т. п. Чаще всего применяют ион-парную хроматографию на обращенной фазе подвижной фазой служат водный буферный раствор и органический растворитель, смешивающийся с водой. Ион-парный реагент адсорбируется на гидрофобной поверхности неподвижной фазы, образуя подвижный анионный слой, в результате поверхность сорбента приобретает свойства ионообменника. [c.276]

    Ввиду устойчивости цистинсодержащих пептидов в слабокис-/юй среде (pH 2,0—6,5) для фракционирования используют гель-фильтрацию [8] и ионообменную хроматографию [2, 41]. Гель-фильтрацию проводят на сефадексе в 257о-ной уксусной кислоте [17], ионообменную хроматографию — на катионитах [45]. При фракционировании необходимо прежде всего разделить цистинсодержащие пептиды, отделение их от других пептидов вовсе не обязательно [36, 41]. Прочие пептиды легко отделить на последующей стадии, после окисления цистина в цистеиновую кислоту. Например, пептиды с цистеиновой кислотой можно эффективно фракционировать с помощью высокоэффективной или ион-парной хроматографии [23]. В присутствии фосфорной кислоты достигается почти идеальное разрешение при хроматографии па эффективных колонках в органических растворителях (гл. 6). [c.173]


Смотреть страницы где упоминается термин Ион-парная хроматография органических растворителе: [c.174]    [c.175]    [c.174]    [c.175]    [c.529]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.172 , c.174 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.172 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители органические

Хроматографы растворитель



© 2025 chem21.info Реклама на сайте