Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы выбора колонки

    Рабочее время и продолжительность анализа. Выбор метода зависит от времени, необходимого для выполнения анализа. Следует отличать рабочее время, затрачиваемое химиком на выполнение операций, от продолжительности анализа, т. е. от времени, протекающего с начала до конца анализа. Так, выпаривание на водяной бане или хроматографическое разделение на колонке с окисью алюминия являются продолжительными операциями однако они требуют небольшой затраты времени химика, поэтому последний может вести одновременно другие работы. В то же время быстрое выпаривание на плитке или, например, экстракционное разделение могут быть выполнены быстро, но нередко [c.28]


    Химики, разрабатывающие новые методы анализа, в нротивоноложность тем, кто работает непосредственно над разделением хлоридов, относятся к ним со смешанным чувством. Летучесть некоторых хлоридов, особенно хлоридов амфотерных элементов, дает возможность анализировать такие элементы, которые не удается определять другими методами. По этой причине хлориды заслуживают глубокого изучения. Но в то же время эти соединения далеко не идеальны в некоторых отношениях. Литература полна сообщений о трудностях, связанных с высокой реакционной способностью галогенидов металлов [10, 11, 55—60, 62]. Так, галогениды легко гидролизуются иод действием атмосферной влаги, в связи с чем необходима особая техника введения пробы например, дозатор необходимо помещать в сухой бокс. Очень важно удалить даже следы влаги из газа-носителя. В колонке нри повышенных температурах галогениды реагируют со многими жидкими неподвижными фазами, что приводит к жестким ограничениям в выборе материалов для набивки колонки. Часто [c.52]

    Газовая хроматография успешно применяется для разделения и количественного определения малых количеств веществ в сложных смесях. Она позволяет определять растворенные в воде органические вещества в микрограммовых и даже в пикограммовых количествах. Этим и объясняется широкое применение газовой хроматографии для определения качества воды. Идентификация и количественное определение содержания примесей в воде чрезвычайно важны для контроля качества воды и устранения источников ее загрязнения. Методом газовой хроматографии при правильном выборе колонки, детектора и условий разделения можно определить любые вещества, которые испаряются без разложения или с воспроизводимым разложением. Мешающие определению вещества можно предварительно удалить с помощью жидкостно-жидкостной экстракции, жидкостной хроматографии, тонкослойной хроматографии или какого-либо другого метода. [c.368]

    ДРУГИЕ МЕТОДЫ ВЫБОРА КОЛОНКИ [c.133]

    Для каждого типа детекторов характерны свои оптимальные условия эксплуатации, которые будут рассмотрены ниже. Здесь мы сделаем лишь несколько общих замечаний. Существуют два способа соединения колонки и детектора. Колонку можно вставлять неносредственно в детектор или использовать специальное вторичное устройство, установленное в корпусе детектора (рис. 4-3). При правильной реализации оба метода подсоединения колонки позволяют получать отличные результаты. Использование вторичного соединительного устройства чрезвычайно удобно при необходимости перехода от одного детектора к другому. Это обеспечивает широкую свободу выбора детектора при проведении анализа, причем требуется только регулировать расход вспомогательного газа. Ири прямом соединении колонки и детектора вспомогательный газ подается в нижнюю часть детектора или смешивается с газом, подаваемым в детектор для его функционирования, нанример с водородом в пламенно-ионизационном детекторе (ИИД). В этом случае каждый детектор имеет свою систему пневматического регулирования расхода вспомогательного газа. [c.69]


    Выбор аналитического метода. Аминокислоты можно определять с помощью двух- или одноколоночного метода. В первом случае основные аминокислоты анализируют на отдельной колонке с высотой столбика смолы 6—8 см, а кислые и нейтральные аминокислоты— на другой, более длинной колонке высотой 50 см. При этом для определения основных аминокислот требуется около 1 ч. [c.173]

    Важным достоинством хроматографии является ее универсальность. Хроматографические методы анализа могут быть применены для самых различных веществ. Благодаря. наличию большого разнообразия в выборе неподвижной фазы, а также возможности широкого изменения других параметров опыта (размеров разделительной колонки, скорости потока газа-носителя, температуры и др.) хроматографические методы отличаются гибкостью, и их легко приспосабливать для различных конкретных задач. [c.75]

    Определение индивидуального состава многокомпонентных смесей — задача весьма сложная и наиболее радикальное ее решение заключается в сочетании различных принципов анализа, что нашло отражение в создании нового метода — хромато-масс-спектрометрии. Высокая чувствительность и универсальность к природе исследуемых соединений определили выбор масс-спектрометрии среди других методов молекулярной спектроскопии для прямой идентификации веществ при выходе из хроматографической колонки [81]. [c.71]

    Важнейшие конструкционные особенности приборов жидкостной хроматографии высокого давления суммированы ниже. Очень часто, так же как в других хроматографических методах, выбор дозируемого объема, геометрии колонки, насадки хроматографической колонки, подвижной фазы и детектора зависит от стоящих перед исследователем задач. Поэтому здесь даны только общие черты метода. [c.147]

    В жидкостной хроматографии применяют селею-ивные детекторы (амперометрический, флуориметрический и др.), способные детектировать очень малое количество вещества. Очистка образца до ввода в жидкостной хроматограф минимальна, Циередко его вводят без предварительной обработки, и без получения производных, что часто невозможно при применении других методов анализа. Наконец, в жидкостной хроматографии возможно создание уникального диапазона селективных взаимодействий за счет изменения подвижной фазы, что значительно улучшает разрешающую способность всей хроматографической системы. Работа с микропримесями налагает ряд требований на весь процесс разделения. Особенное значение имеет разрешающая способность колонки, выбор детектора, предварительная обработка образца и построение калибровочного графика. Правильный выбор условий хроматографирования позволяет повысить чувствительность, надежность и воспроизводимость результатов, что очень актуально при работе с микропримесями. [c.84]

    Газовая хроматография имеет преимущества перед другими методами измерения термодинамических величин, характеризующими адсорбцию или растворение. Прежде всего это возможность работы в широком интервале температур (от —180 до 600 °С) а, следовательно, и значительно более широкий выбор исследуемых веществ (сорбатов, тестовых соединений, молекул-зондов ) — от газов и жидкостей до твердых веществ, в том числе и агрессивных. Метод выгодно отличается быстротой измерения, возможностью применения простой и доступной аппаратуры. Поскольку колонка обладает и разделительными свойствами, можно в одном опыте исследовать несколько веществ и, что еще более важно, отказаться от их очень тщательной предварительной очистки. И, наконец, благодаря высокой чувствительности газовая хроматография является незаменимым методом при изучении очень маленьких количеств сорбата, т. е. при бесконечном разбавлении . [c.308]

    Растворитель для приготовления суспензии часто является определяющим фактором для качества упаковки. Так как суспензия должна сохранять стабильность, начиная от переноса ее в резервуар в течение всей упаковки, необходимо замедлить седиментацию или исключить ее. Для этого существует ряд способов. Один, называемый методом сбалансированной плотности и широко используемый, заключается в выборе растворителя с той же плотностью, что имеет силикагель. Этот растворитель состоит из смеси полигалогензамещенных углеводородов (обычно смесь тетрабромэтана и тетрахлорида углерода) так как плотность его равна плотности силикагеля, седиментации не происходит сколь угодно долго. Недостатком этого способа является высокая токсичность, дороговизна и трудность удаления из колонки полигало-генированных растворителей. Другой способ, называемый методом высокой вязкости , состоит в выборе растворителя с высокой вязкостью, в котором седиментация сорбента происходит достаточно долго. Обычно это растворители, содержащие глицерин, этиленгликоль или циклогексанол. Недостатком этого способа является длительность упаковки, доходящая до нескольких часов. Третий способ, называемый динамическим , состоит в использовании растворителей малой вязкости, упаковка при этом протекает быстро для улучшения стабильности и уменьшения седиментации иногда используют перемешивание суспензии магнитной мешалкой в процессе всей упаковки. [c.116]


    Элюентный способ получил наиболее широкое применение, причем как в жидкофазной, так и в газовой хроматографии и не только с аналитической, но и с препаративной целью. Это объясняется тем, что при правильном выборе условий разделения (сербента, температуры колонки, скорости потока проявителя, количества исследуемой смеси, вводимой в колонку, и др.) из колонки компоненты смеси выходят практически в чистом виде, и их можно уловить для исследования другими методами, а качественный и количественный состав можно определить простым измерением объемов удерживания и площадей пиков. Более подробно экспериментальные и теоретические основы этого способа см. далее. [c.17]

    Важным условием успешного решения практических задач методом ионообменной хроматографии является правильный выбор ионита, его подготовка, а также определение условий проведения опыта, особенно размеров колонны. Поэтому хроматографическому анализу должна предшествовать подготовка ионита, испытание его обменной емкости и других свойств, а также установление на их основе оптимальных размеров зерен ионита и хроматографической колонки (ее длины и диаметра). Соотношение диаметра колонки и размеров зерен ионита не должно быть менее чем 40 1. Этим определяются нижние границы размеров колонок. Можно рекомендо- [c.118]

    Хроматография цостигла особенно интересной фазы своего развития Б начале 1970 г. Еще 10 лет назад газовая хроматография занимала особое положение ни один другой хроматографический метод не мог с ней конкурировать. Однако позднее стала развиваться хроматография в тонком слое и вслед за ней и гель-проникаюшая (ситовая) хроматография. Введение в обращение хроматогр>афии со сверхкритической подвижной фазой и достижения, позволившие сделать качественный скачок в жидкостной хроматографии в колонках, расширили диапазон средств, доступных аналитику для целей разделения. В этой главе мы хотим сравнить различные методы, установить, в каких случаях возможно одновременное применение различных методов, и показать, какие критерии должны быть использованы при выборе того или иного метода. Мы остановимся также на вероятных улучшениях, которые могут повлиять на выбор метода в будущем. [c.240]

    При изучении строения органических соединений методом ПГХ испо-льзуют, как уже отмечалось, два метода метод замещения или отпечатков пальцев и абсолютный метод. В общем случае затруднительно дать рекомендации по предпочтительному использованию указанных двух методов. Выбор метода зависит во многом от характера анализируемого объекта и от наличия стандартов, что позволяет использовать метод отпечатков пальцев . Однако для абсолютного метода выше требования к эффективности хроматографической колонки, чувствительности используемого детектора и его селективности, что позволяет независимо определять природу разделенных компонентов. В этом случае целесообразно использовать высокоэффективные капиллярные колонки и масс-спектрометр как хроматографический детектор наряду с другими селективными детекторами. [c.112]

    Наилучшими методами разделения небольших количеств изотопов для исследовательских целей являются термодиффузионный, вследствие его универсальности, простоты работы и применяемого оборудования, и электромагнитный, из-за простоты и большого коэффициента разделения. Но оба метода слишком неэффективны для крупномасштабного производства. Однако в тех случаях, когда выбор процесса определялся пе экономикой, а сроками, оба метода применялись для крупномасштабного разделения изотопов урана. При крупномасштабном разделении небольшие различия в химических или физических свойствах соединений изотопов должны эффективно усиливаться. По-видимому, надежной основой для выбора метода круннохмасштабного разделения является его энергоемкость. В электромагнитном методе для поддержания сильного магнитного и электрического полей п для превращения всего продукта, подвергаемого разделению, в газообразные ионы должно затрачиваться много энергии. Следует учесть также, что коллекторов разделенных изотопов достигает лишь незначительная часть ионизованного материала. Термо-диффузиоииый метод требует затрат большого количества тепла для создания температурного градиента в колонках. Кроме того, коэффициент разделения для термодиффузионного метода меньше, чем для других методов. [c.362]

    В области распределительной хроматографии органических веществ важен выбор носителя и подвижной фазы и применение наиболее чувствительного детекционного реагента. Применяют или бумагу (хроматографическую, модифицированную или специально обработанную), или колонки из силикагеля, целлюлозы, крахмала, каучука. Для количественного анализа или измеряют интенсивность пятен, или применяют колориметрию, потенцпо-метрию, полярографию, радиоиндикаторы, активационный анализ и другие методы. Положение и форма пятен имеют важное значение. Положение отдельных иятен, отсчитываемое от линии старта, позволяет дать количественную характеристику выделенного вещества, хорошо воспроизводимую и характерную для него при постоянстве условий опыта. Полученная таким путем константа, величина R , позволяет идентифицировать различные по составу или но их строению химические соединения. [c.199]

    Пытаться провести разделение пробы на имеющемся хроматографе - очень практичный метод выбора копонки. Даже если колонка этого хроматографа не обеспечивает желаемого разделения, вы можете получить очень полезную информацию. В случае же удачи задача будет сразу же решена. Когда анализируются жидкие пробы, вероятность успеха больше, если используются неполярные насадки, например 5Е-30, и температура их программируется в широком диапазоне. Для колонок этого типа опубликовано больше данных, чем для каких-либо других. [c.132]

    В некоторых методах оптимизации коэффициент емкости рассматривается в виде функции параметров. Такие так называемые интерпретативные методы оптимизации описаны в разд. 5.5. Зная коэффициенты емкости, величины Я, и 5 вычислить гораздо легче, чем отнощения высота пика/глубина (высота) седловины, и, кроме того, при известных коэффициентах емкости величины Р. и 5 можно вычислить независимо от того, насколько мала разность между двумя коэффициентами емкости. Другими словами, разрещение пары пиков можно рассчитать и в том интервале, в котором величину этого критерия весьма трудно оценить из реальной хроматограммы. Следовательно, использование Rs или 5 в качестве критерия для оценки разделения в сочетании с интерпретативными методами оптимизации позволяет определить изменения величины разрешения в интервале 0колонке разделение с более высоким значением Ре осуществить легко и без оптимизации, а во-вторых, при использовании той же колонки улучшение разрешения в интервале 0<7 8<0,6 помогает выбрать правильное направленпе дальнейшей оптимизации. Следовательно, выбор величины Р или [c.162]

    В большинстве случаев разделение, достигаемое посредством аналитической ТСХ, можно перевести на микро- или полу-микропрепаративный уровень. Препаративное разделение на тонких слоях чаще всего проводят методами адсорбционной и распределительной хроматографии, тогда как препаративное разделение методом ионообменной или колоночной хроматографии проводится только на колонках. Помимо препаративной тех существуют и другие методы препаративного разделения (например, классическая жидкостная хроматография и особенно высокоэффективная жидкостная хроматография, или хроматография при высоком давлении, см. гл. 4), которые в ряде случаев могут оказаться более эффективными. Методом сухой колоночной хроматографии (СКХ) можно проводить препаративное разделение в таких же условиях, которые применяются при разделении методом ТСХ [36]. Поэтому рекомендуется прежде всего проанализировать достоинства и недостатки различных типов и методов хроматографии и оценить целесообразность их применения для разделения конкретных соединений (устойчивых или неустойчивых, с близкими или значительно различающимися величинами Rf). Выбор метода зависит также от того, какие количества соединений и как быстро необходимо получить. [c.121]

    Первой и самой главной целью является достижение желаемого разделения вторая цель — оптимизация коэффициента разделения третья (в иерархии целей, которые управляют выбором неподвижной фазы в препаративной ЖХ)—сведение к минимуму цены и трудностей работы. Многие смеси могут быть разделены в нескольких ЖХ-системах. Если имеется такой выбор, экономические и эксплуатационные соображения могут окончательно определить, какую систему следует выбрать. С другой стороны, ряд методов выделения никогда не бывает оптимальным, так как свойства образца могут обусловить критический компромисс между различными параметрами системы. В этих случаях каждая попытка выбрать неподвижную фазу основывается главным образом на ее способности приводить к оптимальному разделению. Если нет предварительного опыта, которым можно было бы руководствоваться, то используйте обзор по доступным материалам для насадок, например [7], и обратитесь к литературе, чтобы выбрать материал, соответствующий требованиям схемы разделения. Кроме стоимости первоначальной покупки не забудьте учесть стоимость рабочей силы и материалов, необходимых для заполнения колонки и ее уравнове-ишвания, учтите стабильность насадки и частоту и стоимость регенерации или замены используемой насадки. Целесообраз- [c.70]

    Вскоре после проведения этого исследования Консден, Гордон и Мартин [372] применили к пептидам свой знаменитый метод хроматографии а бумаге. Выбор подвижной фазы, очевидно, диктуется природой пептидов, подлежащих разделению, вследствие чего необходимы предварительные пробы однако некоторые съедения а выборе подвижной фазы в настоящее время можно найти в литературе [340, 349, 373 и пр.]. Положение пептидов на бумаге следует определять, не вызывая слишком сильного их разрушения. Для этой цели можно прибегнуть к флуоресценции [374] можно также использовать весьма разбавленный (0,02%-ный) раствор нингидрина или концентрированный его раствор, который наносится в отдельных точках специальной щеточкой [375а]. Крупные пептиды обнаруживаются с трудом, но их редко анализируют на бумаге. С помощью специальных цветных реакций (табл. 7) оказывается возможным установить расположение некоторых пептидов на хроматограмме [3756]. Двумерное хроматографирование на бумаге обладает действительно поразительной разрешающей способностью, которую целесообразно использовать для конечного разделения групп , полученных при предварительном фракционировании с помощью ионофореза, ионного обмена или адсорбции. Некоторые исследователи, располагающие очень малыми количествами дорогостоящего соединения, удовлетворены тем, что они могут провести хроматограмму на бумаге, используя для этого количество пептида, не превышающее примерно 1 мг. Другие исследователи сожалеют, что опасность перегрузки бумаги не позволяет им воспользоваться большими количествами, так как последующее разделение пятен и окончательная идентификация пятен, являющихся, повидимому, чистыми, представляет собой довольно деликатную операцию. Эти исследователи, однако, могут обратиться к двум другим методам либо к применению толстой бумаги [376] или хроматопилии [377а], либо к использованию колонок. Для фракционирования пептидов на бумаге можно применять ряд растворителей, в числе которых должны быть упомянуты фенол или крезол с аммиаком, колли-дин, пиридин -f- коллидин, фенол с буферным раствором, бутиловый спирт -f- уксусная (или муравьиная) кислота и фосфатные буферные растворы. [c.155]

    Комбинирование обоих методов анализа прежде всего дает информацию о полноте газохроматографического разделения. Если на газохроматографической колонке разделяются не все компоненты исследуемого образца, то количество пятен па тонкослойной хроматограмме будет превышать число пиков на газовой хроматограмме. Можно также определить, все ли компоненты образца вышли из колонки если количество пятен на тонкослойной хроматограмме исходного образца превышает число пиков на газовой хроматограмме, то 3to означает частичные потери образца на колонке. Аналогичным образом можно проверить, все ли компоненты, вышедшие из колонки, зарегистрированы детектором. В процессе газохроматографического разделения под влиянием температуры из-за неправильного выбора неподвижной фазу или по каким-либо другим причинам может иметь место химическое превращение некоторых веществ. При этом регистрируются вещества, отсутствующие в исходном образце. Комбинирование газовой и тонкослойной хроматографии позволяет решить и эту проблему. Если на тонкослойной хроматограмме после газохро-матографцческого разделения появляются пятна, отсутствовавшие на тонкослойной хроматограмме исходного образца, то это означает, что в процессе газохроматографического анализа имеют место химические превращения. Образец может разлагаться при дозировании (мгновенно) или на колонке, т. е. в ходе процесса разделения. В первом случае продукты разложения обнаруживаются в виде четких компактных пятен, во втором — в Виде размытых пятен. При комбинировании ГХ и ТСХ возможны и такие случаи, когда число пятен на тонкослойной хроматограмме меньше числа газохроматографических пиков. Это может произойти из-за неправильного выбора типа сорбента или из-за разложения фракции на участке между выходом из хроматографической колонки и слоем (например, при перегреве соединительной трубки, под действием кислорода или влаги воздуха и т. п.). [c.147]

    Для оценки и выбора НФ очень удобен метод классификации их по условной хроматографической полярности, предложенной Роршнейдером и усовершенствованный Мак-Рейнольдсом. В этом методе используют так называемые индексы удерживания (индексы Ковача). В системе этих индексов в качестве стандартных веществ приняты парафины. Индекс удерживания / на любой колонке и при любых условиях для нормального предельного углеводорода принимают равным числу атомов углерода, умноженному иа 100. Так,/сбНм = 600, /с,н,о = 700 и т. д. Значение индекса удерживания любого другого вещества на [c.621]

    Разделение и анализ неорганических соединений методом газовой хроматографии получили значительно меньшее развитие, чем органических, вследствие малой летучести многих неорганических соединений и трудности выбора соответствующих насадочных материалов для колонки. Кауфман и другие [93 ] разделили некоторые гидриды бора на колонке с парафиновым маслом, нанесенным на целит, при комнатной температуре. Перманентные неорганические газы лучше всего разделяются методом газо-адсорбционной хроматографии. Кириакос и Бурд [107] полностью разделили смесь, состоящую из водорода, кислорода, азота, метана и окиси углерода, на колонке длиной 4,9 м, содержащей молекулярные сита Линде 5А с крупностью зерен 30—60 меш, которые перед применением активировалось при 350° С в вакууме. На рис. ХУП1-3 показано превосходное разделение, полученное для указанной смеси газов. Шульчевский и Хигучи [165 ] показали, что силикагель при температурах смеси сухого льда и ацетона также может применяться для разделения кислорода и азота. Грин и другие [64] полностью разделили водород, окись и дву- [c.402]

    К счастью, хотя выбор неподвил<ных фаз ограничен, большое число аналитических разделений может быть выполнено на колонках, заполненных силикагелем со связанной фазой. Поэтому при разработке новых аналитических методов в подавляющем числе случаев ia-силикагель используют в первую очередь. Однако это привело к тому, что многие хроматографисты не рассматривают другие неподвижные фазы, которые представляли бы лучший выбор для применения в крупномасштабных ЖХ-препаративных разделениях. Например, немодифицирован-ный силикагель намного дешевле, чем силикагель с привитой фазой, и на нем многие разделения могут быть выполнены так же, если не лучше, чем на силикагелях со связанной фазой при использовании типичных элюентов или других нормально- или обращенно-фазовых систем [112—114]. [c.74]

    Наряду с одноколоночным анализом в непрерывном градиенте был разработан одноколоночный анализ в ступенчатом градиенте [8]. Вначале этот метод сильно уступал по эффективности двухколоночной схеме анализа время анализа белкового гидролизата составляло 38 ч. Разделение проводили на колонке (0,63X100 см) с амберлитом Щ-120 (20—40 мкм) в трех буферных растворах с pH 2,95 4,15 и 5,0 при 40 и 50 °С. Удовлетворительное разделение этим методом достигалось при правильном выборе градиента и тщательном подборе прочих условий анализа. Дальнейшее развитие этой схемы шло по линии сокращения времени анализа, т. е. повышения эффективности, а также повышения хроматографического разрешения при анализе нингидринположительных компонентов из биологических материалов. В результате продолжительность анализа белковых гидролизатов была доведена до 260 мин [40]. При анализе физиологических жидкостей основная задача состоит в том, чтобы разделить все имеющиеся компоненты на одной колонке и определить объемы их выхода в идентичных условиях. В связи с этим следует отметить работу Гамильтона [41], в которой указаны объемы выхода 180 веществ. Эти данные можно использовать для идентификации компонентов физиологических жидкостей, а также для выбора условий анализа нингидринположительных веществ природных смесей. Для повышения разрешения смесей амидов и других трудноразделяемых пар аминокислот также используют буферные растворы на основе солей лития [42, 43]. [c.348]

    Применение пористых полимерных сорбентов позволило улучшить форму пиков воды при газохроматографических определениях. Относительная ошибка определения воды в пропаноле при использовании порапака К (140 С) составляла 20% при размере пробы 0,01 мг, а для пробы массой 1 мг — 8% [213]. Используя колонку с порапаком р при 110 °С, Коттон и сотр. [88] определяли 5—10 мг воды в 50 мл раствора хлорофилла с воспроизводимостью 10%. Сообщают также о применении порапака рЗ для определения 0,15 мг воды в 1 мл раствора декстрана [223]. Хоган и сотр. [144] установили, что при использовании порапака Q содержание воды Б 100 мл органического растворителя, равное 1 мг, может быть определено правильностью около 20%. Гоух и Симпсон [126] пришли к заключению, что количественное элюирование воды и этанола осуществляется лишь при концентрации воды не менее 35%. Это побудило их исследовать влияние размера пробы и содержания воды на процесс элюирования воды и спирта из колонок с пористым полимерным сорбентом [127]. В ходе работы были изучены порапак Q, порапак QS и порапак Р-НМОЗ (обработанный гексаметилдисилазаном). При этом отмечали существенное изменение количества адсорбированных продуктов при переходе от одной партии порапака к другой. Такое заключение было сделано на основании экспериментов с использованием ВзО и последующим анализом покидающих колонку продуктов при разных температурах методом масс-спектрометрии. При выборе соответствующего наполнителя колонки можно было удовлетворительно определять концентрацию воды до 1%. Установлено, что термическая обработка или силанизация наполнителя колонки по существу не улучшает полноту элюирования. Однако Селлерс [263] получал удовлетворительные результаты при определении воды в органических жидкостях при ее концентрации порядка нескольких миллионных долей с применением колонки с порапаком Р при 100 °С или с порапаком ф при 120 °С. В этой работе были применены колонки из нержавеющей стали размером 170x0,6 см. После заполнения колонок сорбентом их кондиционировали в течение 12 ч при 180 С. При определении воды в гексане, бензоле, дихлорэтане и этилацетате в диапазоне концентраций от 10 млн до 4% воспроизводимость составляла 3%, [c.327]

    Широкие фракции, выкипающие в интервале 50—200° С, были получены в результате перегонки 150—200 мл нефти, высушенной хлористым кальцием, из колбы Вюрца. Особое внимание было уделено созданию стабильных условий перегонки — подогрев проводился на колбонагревателе с регулировкой температуры ЛАТРом при постоянной скорости отбора дистиллята. Затем 5—10 мл каждой широкой фракции разгонялись на ректификационной колонке эффективностью в 50 т.т. с выделением фракций 50—100, 100—150, 150—175 и 175—200° С. Критерием при выборе температурного интервала для этих фракций наряду с другими факторами был фактор времени. Иначе говоря, выделение в большой степени суженных фракций для анализа давало возможность получить более детализированные данныо о составе, однако время анализа при этом значительно возрастало, что делало метод практически неприемлемым для массового исследования. [c.115]

    При выборе ионита существенно обеспечить отсутствие побочных реакций, влияющих на результат анализа. Такие реакции могут обусловливаться либо прямым взаимодействием некоторых растворов с твердым ионитом, либо выщелачиванием из ионита растворимых веществ. Некоторое количество органических веществ извлекается из ионообменной смолы, даже если последняя помещена в чистую воду нри комнатной температуре. На практике это обычно не имеет значения из-за небольших сроков контакта ионитов с растворами. Если же ионообменная колонка с раствором оставляется на некоторое время, например на ночь, то извлеченные органические примеси могут оказывать неблагоприятное влияние на ход анализа. Чтобы избежать этого, колонку промывают непосредственно перед употреблением. Невозможно рекомендовать какие-либо определенные пределы для температуры, pH и других условий, при которых следует использовать те или иные иониты. Умеренное разрушение ионита не опасно, если выделяющиеся вещества не влияют на результаты анализа элюата. Типичным примером может служить разделение металлов для последующего радиометрического анализа или разделение органических веществ, определяемых с помощью специальных колориметрических методов. С другой стороны, если элюат анализируется бихроматным методом или титрованием щелочью, то самое незначительное разложение ионита может иметь весьма вредные последствия. В связи с этим с.яедует заметить, что имеющиеся в литературе указания на выделение кислот из катионитов могут объясняться присутствием небольших количеств примесей в дистиллированной воде. [c.144]

    Для уменьшения вероятности ошибки и повышения надежности при установлении класса анализируемых веществ целесообразно использовать несколько пар растворителей, существенно отличающихся по своим свойствам (например, полярный и неполярный растворитель). Удерживание используемых растворителей должно быть таким, чтобы при хроматографическом анализе они не перекрывали зоны выхода анализируемых компонентов. Кроме того, растворители не должны содержать примеси, имеющие времена удерживания, близкие к временам удерживания анализируемых компонентов. Целесообразно выбирать в качестве фаз такие растворители, которые элюируются из колонки много раньше или позднее (этот последний вариант предпочтительнее) анализируемых соединений. Следует иметь в виду, что вследствие взаимной растворимости фаз при анализе любой из них будет наблюдаться хроматографическая зона другой фазы. Поэтому анализ одной фазы, как это было предложено в варианте хромато-распределительного метода Берозы и Боумана, в общем случае не облегчает задачу выбора системы полярный растворитель — неполярный растворитель — стационарная жидкая фаза в хроматографической колонке. [c.53]

    В хроматографах фирмы Varian Aerograph (США) для параллельной работы двух детекторов при.меняется деление потоков в отношении 1 1 на выходе из колонки. Это позволяет сравнивать работу двух детекторов (в качестве одного пз них устанавливают количественный детектор) и производить одновременную запись их показаний с применением двухперьевого регистратора. Таким образом, в настоящее время используются в основном шесть методов калибровки хроматографических детекторов. Некоторые из них можно применять только для детекторов низкой чувствительности, другие, наоборот, специально разработаны для высокочувствительных детекторов. Выбор лгето-да калибровки в каждом конкретном случае зависит от типа при-.меняемого детектора и необходимой точности калибровки. [c.152]


Смотреть страницы где упоминается термин Другие методы выбора колонки: [c.111]    [c.88]    [c.121]    [c.143]    [c.200]    [c.597]    [c.198]    [c.54]    [c.131]   
Смотреть главы в:

Газовая хроматография на стеклянных капиллярных колонках -> Другие методы выбора колонки




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Метод выбора



© 2025 chem21.info Реклама на сайте