Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тонкая структура хромосом

    Ш.2. КЛАССИФИКАЦИЯ И ТОНКАЯ СТРУКТУРА ХРОМОСОМЫ [c.41]

    Жгутиковые — одноклеточные, и их хромосомы видны в течение всего биологического цикла. Они обнаруживают фибриллярную структуру, представляющуюся промежуточной между структурами бактериальных ядер и хромосом эукариотов — высших организмов [85]. Хромосомы жгутиковых состоят из нитей ДНК, которые отчетливо видны в тонких срезах. Гистоны, или основные белки, обычно ассоциированные с ДНК в клеточных ядрах и хромосомах высших организмов, в этом материале, по-видимому, отсутствуют [86—88]. Ультратонкие срезы этих хромосом выявляют наличие пачек параллельных арок, связанных с холестерической организацией [70, 89]. В продольном сечении полосы волокон, рассеченных под прямым углом, чередуются с волокнами, лежащими в плоскости сечения. В косых сечениях получаются ряды параллельных арок. В поперечных (или близких к поперечным) сечениях волокна имеют постоянное" направление или образуют большие дуги. [c.303]


    Электронно-микроскопическая картина хромосом [490, 517]. Чтобы выявить тонкую структуру хромосом человека, были использованы многочисленные методы электронной микроскопии. Современные модели организации генетического материала эукариот будут обсуждаться в разд. 2.3, здесь же достаточно сказать, что данные электронной микроскопии не противоречат модели, предполагающей, что хроматин состоит из сверхспирализованных нитей, причем имеется несколько порядков спирализации (рис. 2.17). Обнаружено три типа хроматиновых фибрилл фибриллы первого типа имеют диаметр 250 A, фибриллы второго типа-100 A и третьего-только 30-50 A. Имеются довольно убедительные доказательства того, что фибриллы этого последнего типа представляют собой генетически активный хроматин. Двойная спираль чистой ДНК имеет диаметр 20 A, следовательно, фибриллы 30-50 A соответствуют диаметру нити ДНК вместе с белками (гистонами и негистонами). Фибриллы диаметром 100 A отражают, по-видимому, вторичную спирализа-цию фибрилл 30-50 A, а нити 250 A могут отражать третичный уровень спирализации. В метафазной хромосоме эти третичные спирали могут иметь примерно такую укладку, как указано на рис. 2.17. Примерно девять фибрилл 250 A, вероятно, каким-то образом связаны вместе, и два таких пучка образуют различимую [c.53]

    Многочисленные опыты по Р1-трансдукции большого числа генов, ранее нанесенных на карту хромосомы Е. соН, на основе данных о рекомбинации при конъюгации показали, что сцепление двух генов на бактериальной хромосоме может быть установлено по относительной частоте их совместной трансдукции. Чем выше эта частота, тем больше сцепление. Это вполне естественно, так как чем ближе расположены два гена, тем больше вероятность того, что они окажутся в одном и том же фрагменте, вырезанном из генома бактерии (и составляющем от него 3%), и попадут, следовательно, в одну и ту же трансдуцирующую частицу. Если, однако, проследить за трансдукцией генетических маркеров, настолько тесно сцепленных, что они почти неизбежно должны попасть в одну и ту же частицу фага, то мы убедимся в том, что все-таки не всегда бактерия-трансдуктант несет одновременно оба таких маркера. Это расщепление по очень тесно сцепленным маркерам, происходящее при трансдукции, несомненно, отражает характер процесса генетической рекомбинации, в результате которого трансдуцированные локусы донорного генома включаются в геном клетки-реципиента. Как видно из фиг. 178, для каждого акта интеграции необходимо два кроссинговера. Отсюда следует, что два тесно сцепленных генетических маркера донора, введенные в клетку-реципиент, могут попасть в один и тот же рекомбинантный геном только в том случае, если ни один из этих двух необходимых перекрестов не произойдет между ними. Вероятность того, что такой кроссинговер не произойдет между двумя маркерами, возрастает с увеличением их сцепления. Следовательно, по частоте совместной трансдукции можно судить о расстоянии, разделяющем два очень тесно сцепленных локуса. Таким образом, изучение совместной трансдукции позволяет выявить тонкую структуру небольших фрагментов бактериальной хромосомы. [c.358]


    В Хромосоме Salmonella. Тонкая структура этих генов была подробно изучена и нанесена на карту [112]. Было подсчитано, что если отдельная молекула т-РНК соответствует целому гистидн-новому оперону, то ее константа седиментации должна составлять приблизительно 38 S. Если Hie каждому отдельному ферменту соответствует своя т-РНК, то молекулярные веса таких пг-РНК будут ниже. Экспериментальные данные показали, что коэффициент седиментации т-РНК для этой системы составляет 34 S. Полученная величина слишком велика для т-РНК, кодируюш,ей какой-либо один из известных ферментов, и хорошо согласуется с величиной, предсказанной для т-РНК, соответствующей целому оперону [113]. Отсюда следует, что т-РНК может образовать с рибосомами комплекс, который способен синтезировать все полипептиды, закодированные в одном опероне. [c.286]

    В процессе митотического деления хорошо различимы несколько фаз. В течение первой фазы, или профазы, в ядре появляются нитевидные структуры, хроматиды, а ядрышко исчезает. Эти хроматиды в конечном итоге путем сокращения и скручивания формируют интенсивно базофильные компактные хромосомы. В течение этой фазы центросомы, расположенные вне ядра, делятся на две половины, которые расходятся к противоположным сторонам ядра. Ядерная мембрана и ядрышко исчезают, возникает структура, называемая веретеном. Она состоит из тонких нитей, расходящихся от каждой центросомы к экватору веретенообразной фигуры. В течение метафазы хромосомы выстраиваются у экватора веретена, и каждая из них делится на две равные части, которые на протяжении анафазы расходятся к противоположным полюсам веретена. В результате этого процесса каждая дочерняя клетка получает тот хромосомный материал, который имелся у материнской клетки. В течение последней фазы деления— телофазы — образуются новые ядра. При этом из каждой группы дочерних хромосом, теряющих свои очертания, формируется хроматин нового ядра одновременно образуются новая ядерная мембрана и ядрышко. [c.135]

    Возьмем классический пример — хромосомы. Теперь уже достаточно широко известно, что хромосомы — особые тельца в ядре клетки, в которых сконцентрировано наследственное вещество клетки, — поразительным образом меняют свою форму в зависимости от состояния клетки. Хромосомы — это святая святых клетки, да и жизни вообше, н они, конечно, должны быть защищены больше любой другой структуры, из которых складывается живая система. Тут возникает некая психологическая аберрация. В согласии с нашими обыденными представлениями защищенность как-то непременно связана с тяжеловесностью, неизменяемостью, своего рода закостенелостью. Поэто.му наблюдателя интимных процессов в клетке и поражает та легкость, с которой хромосомы то формируются, собираются в изящные, плотна упакованные тельца, то распускаются, расплетаются на такие тонкие нити, которые даже становятся незримыми в обычном микроскопе. [c.154]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Зачастую химизм связывания флуорохрома с клетками, их структурами или какими-либо веществами совершенно не ясен, но тем не менее и в этих случаях флуоресцентный метод ввиду высокой чувствительности и специфичности остается лучшим методом обнаружения и анализа различных тонких особенностей объекта. Так, несколько лет назад было обнаружено, что хромосомы человека и многих других организмов неравномерно окрашиваются но длине некоторыма флуорохромами, в первую очередь акрихином и акрихин-ипритом [c.293]

    Исследования, о которых идет речь, показали, что бороздки неравноправны. При построении хромосомы ДНК образует тесный комплекс с особым типом белков — ги-стонами. Этот комплекс обозначается как хроматин. Применение тонких химических методов анализа позволило установить, что гистоны, несущие главным образом структурирующие, в известной мере пассивные функции, взаимодействуют с ДНК преимущественно по ее большой бороздке, а активной рабочей поверхностью служит малая бороздка. Именно с нею взаимодействуют белки-регуляторы, открывающие или запирагощие считывание наследственной информации с генов, заключенных в структуре ДНК, то есть управляющие важнейшим процессом реализации генного эффекта. С этой же, малой бороздкой реагируют и различные лекарственные вещества, в первую очередь из группы антибиотиков. Важнейшее биологическое сочетание структуры и функции, таким образом, здесь выступает с особой отчетливостью. [c.168]


    Митоз этапы деления диплоидной клетки. А. На схеме показаны две пары гомологичных хромосом (они выделены разным цветом). Каждый член пары проходит через митоз как независимая единица. Во время интерфазы хромосомы имеют вцд тонких, диффузных нитей, которые в норме трудно визуализировать. В это время происходит дупликация хромосом. Реплицированные хромосомы конденсируются в дискретные структуры, которые в стадии профазы легкоразличимы. В проме- [c.14]


Смотреть страницы где упоминается термин Тонкая структура хромосом: [c.490]    [c.305]    [c.142]    [c.69]    [c.289]    [c.289]    [c.104]    [c.168]    [c.22]    [c.162]    [c.180]    [c.194]    [c.22]    [c.21]   
Смотреть главы в:

Современная биология -> Тонкая структура хромосом




ПОИСК





Смотрите так же термины и статьи:

Классификация и тонкая структура хромосомы

Тонкая структура

Хромосома хромосомы

Хромосомы

тонкой



© 2025 chem21.info Реклама на сайте