Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Человек число хромосом

    В метафазе I каждая отцовская и материнская хромосома имеет равную вероятность оказаться по ту или другую сторону метафазной пластинки. Соответственно в каждой гамете могут оказаться как отцовские, так и материнские хромосомы. Если число хромосом значительно, то число возможных комбинаций сочетания отцовских и материнских хромосом в гамете очень велико, а вероятность того, что в определенную гамету попадут хромосомы только одного из родителей, очень мала. Рассмотрим, например, кариотип человека. В каждой нормальной клетке содержится 23 пары хромосом. Предположим, что первая отцовская хромосома оказалась по определенную сторону метафазной пла- [c.33]


    Построение мультилокусной генетической карты (карты сцепления) хромосомы человека — непростая задача для ее решения используют специализированную комьютерную программу, позволяющую установить порядок расположения локусов, наилучшим образом согласующийся с данными по рекомбинациям. Проблема упорядочивания локусов усложняется по мере возрастания числа локусов, которые необходимо картировать. Для локусов сушествует М/2 возможных вариантов их расположения. Так, для 10 локусов их число равно 1 814 400. И хотя некоторые комбинации заведомо нереальны, даже если основываться на визуальной проверке данных, все же число возможных вариантов остается очень большим. Обычно сначала находят наиболее вероятное расположение нескольких сцепленных локусов, а затем комбинируют эти наилучшие варианты и строят статистически достоверную карту сцепления всех локусов. Критерием того, расположен ли один локус рядом с другим, является значение десятичного логарифма правдоподобия (лод-балла) если он равен или превышает +3,00, то ответ будет положительным. [c.459]

    Зигота, в которой число хромосом меньще диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Если это происходит у животньк, то из таких зигот в больщинстве случаев развиваются особи с резко выраженными аномалиями. Среди наиболее часто встречающихся хромосомных мутаций, возникающих у человека в результате нерасхождения хромосом, — одна из форм трисомии, называемая синдромом Дауна (2п = 47). Такое состояние, названное по фамилии врача, описавшего его впервые в 1866 г., вызывается нерасхождением хромосом 21-й пары. Эта мутация описана в разд. 25.7.6. [c.210]

    Огромное разнообразие антител неадекватно числу генов, локализованных в лимфоцитах. Например, в клетках человека содержится не более 10 генов, а число вырабатываемых антител на 1—2 порядка больще. Иммуноглобулины являются белками, следовательно, они кодируются соответствующими генами. Таким образом, разгадку феномена этого несоответствия следует искать в особенностях функционирования генома лимфоцитов. Оказалось, что синтез антител кодируется тремя различными семействами несцепленных генов, расположенных в различных хромосомах. Рассмотрим, как формируется функционально активный участок ДНК, ответственный за образование легкой цепи . Обнаружено около 300 генов, кодирующих вариабельные участки Ь-цепи (У ), один ген, кодирующий синтез константного участка (С ), и от одного до четырех генов, ответственных за синтез аминокислотных последовательностей, соединяющих константные и вариабельные участки легкой цепи (1 ). [c.486]

    Решение задачи № 236. Известно, что у птиц, в том числе и разводимых человеком кур, гетерогаметным полом является женский. При переопределении пола в результате заболевания генотип особи не изменился и, хотя курица функционировала как петух, у нее образовывались в равном соотношении два типа сперматозоидов с 2-хромосомой и лишенные ее. Скрещивание данной особи с нормальной самкой можно записать следующим образом  [c.87]


    Степень ra6imbHO TH соматических гибридов животных клеток зависит от филогенетической близости родительских видов. У межвидовых габридов утрачивается небольшое число хромосом, а у гиб-оидньгк клеток человек х комар или мышь х курица хромосомы одного из родителей вскоре после образования гибридов почти полное гью элиминируются. Элиминация хромосом видоспецифична в приведенных примерах утрачиваются хромосомы комара и курицы. В гибридах мышь х человек теряются хромосомы человека. Поэтому такие гибриды особенно удобны для картирования генов человека и изучения механизмов их регуляции. Это объясняется тем, что среди подобных гибридов всегда можно найти клоны, содержащие определенную хромосому человека, тем более что человеческие хромосомы под микроскопом заметно отличаются от хромосом мыши. [c.145]

    В настоящее время термин хромосома относят к комплексу белка и молекулы ДНК. Термином ген определяют фрагмент ДНК, который направляет синтез индивидуальных полипептидов. Различные живые организмы различаются числом хромосом и генов лошадь имеет 64 хромосомы (32 пары), кошка - 38 хромосом, а человек - 46 хромосом (23 пары). Полагают, что в 23 парах хромосом человека содержится 100 ООО генов. [c.533]

    Механизм действия ДНК-полимераз эукариот подобен таковому у прокариот. Отличия в процессе репликации заключаются в следующем хромосома эукариот имеет линейную структуру, на обеих цепях расположено множество репликонов и соответствующее количество терминаторов. Линейность ДНК эукариот является причиной проблем, которых не существует у прокариот, имеющих кольцевую ДНК. В отличие от лидирующей цепи, которая реплицируется полностью, праймер, находящийся у З -конца отстающей цепи, разрушается и не реплицируется при помощи ДНК-полимераз. Для предотвращения укорачивания цепи на концах хромосомы находятся теломеры — участки нереплицируемой ДНК. На этом участке ДНК может синтезироваться праймер, и полнота репликации сохранится. Теломера состоит из большого числа повторов, например у человека ТТАГГГ. Матрицей для теломеры является РНК, а специальный фермент теломераза, представляющий собой обратную транскриптазу, присоединяет эти фрагменты к З -концу для сохранения исходных размеров хромосомы. [c.453]

    Цветовая слепота. Полное отсутствие или недостаток колбочек какого-либо типа ведет к различным формам цветовой слепоты или аномалиям цветоошущения, т. е. неспособности различать определенные цвета. Например, люди, у которьгх отсутствуют красные или зеленые колбочки, не различают красный и зеленый цвета, а те, у кого имеется недостаточное число либо тех, либо других колбочек, плохо различают ненасыщенные оттенки этих цветов. Для выявления дефектов цветового зрения применяют специальные тестовые таблицы (например, таблицы Исихары), составленные из разноцветных точек. На некоторьгх таблицах из этих точек составлены цифры. Человек с нормальным цветовым зрением легко различает эти цифры, а лица с нарушенным цветоощущением видят другое число или вообще не видят никакой цифры. Цветовая слепота передается по наследству как рецессивный признак, сцепленный с полом. Он обусловлен генными дефектами Х-хромосомы, поэтому им чаще всего страдают мужчины око- [c.328]

    Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при 1-м делении мейоза каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом (рис. 15-9 А). Из одного только этого факта следует, что клетки любой особи могут в принципе образовать 2" генетически различающихся гамет, где п-гаплоидное число хромосом. Нанример, у человека каждый индивидуум способен образовать по меньшей мере 2 = 8,4-10 генетически различных гамет. Однако на самом деле число возможных гамет неизмеримо больше из-за кроссинговера (перекреста) - процесса, происходящего во время длительной профазы 1-го деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в двух-трех точках. Как показано на рис. 15-9 Б, такой процесс перетасовывает гены любой хромосомы в гаметах. [c.17]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]


    По геному человека равномерно распределены примерно 100 ООО блоков динуклеотидных повторов A/GT [(СА) (GT)] (рис. 20.13), содержащих от 1 до 40 повторяющихся A/GT-эле-ментов. Любой такой блок, локализованный в определенном участке хромосомы, передается из поколения в поколение с сохранением числа повторяющихся элементов. Для СА/ОТ-повто-ра принято обозначение (СА) , где п - число СА-повторов. В геноме человека встречаются и другие динуклеотидные повторы [например, (АТ),, и т. д.], а также три-[(АТС),, и т. д.] и тет-рануклеотидные [(AT G),, и т. д.]. [c.454]

    Карты сцепления хромосом человека постоянно обновляются по мере идентификации дополнительных полиморфных локусов. С увеличением числа локусов повышается разрешение карты и уменьшается расстояние между локусами. К 1994 г. были определены генотипы членов СЕРН-семей примерно по 6000 полиморфным маркерам и с помощью мультилокусного картирования установлено положение примерно 1000 локусов по всему геному человека со средним расстоянием между локусами около 4 сМ. Задача широкомасштабных проектов картирования состоит в том, чтобы, используя дополнительные полиморфные маркеры, построить карту каждой хромосомы с расстоянием между локусами 1-2 сМ. [c.460]

    Генетический аппарат в клетках эукариот организован в форме нескольких линейных хромосом, в которых ДНК прочно связана с белками-гистонами, обеспечивающими упаковку и упорядочение ДНК в виде структурных единиц—н уклеосом (учитывая при этом "код упаковки хроматина" и экстраполируя его на клетки большинства эукариот) Так, в гаплоидной клетке Sa haromy es erevisiae содержится 17 хромосом, в каждой из которых детектировано 1000 кЬ и, следовательно, число генов могло бы достигать в такой клетке 11 ООО, для 23 хромосом в гаплоидной клетке человека, где в одной хромосоме содержится 125 ООО кЬ, число генов должно бы возрасти до 2 млн Предположительно близкое число генов могло бы оказаться в гаплоидных клетках кукурузы, где имеется 10 хромосом, в клетках кролика с 22 хромосомами, или мыши с 20 хромосомами Однако, в хромосомах эукариотических организмов содержится генов меньше, чем некодирующих участков (спейсеров, или разделителей), и также имеется масса сходных между собой фрагментов ДНК, повторяющихся десятки-сотни тысяч раз Вот почему, например, у человека лишь [c.176]

    При наблюдении в микроскоп за ядром делящихся эукариотических клеток было обнаружено, что их генетический материал распределен по хромосомам, число которых зависит от вида организма (табл. 27-5). В клетке человека, например, содержится 46 хромосом. В настоящее время установлено, что каждая хромосома эукариотической клетки типа показанной на рис. 27-21 содержит одну очень большую молекулу двухцепочечной ДНК, длина которой может в 4-100 раз превышать длину ДНК Е. oll. Например, физическая длина молекулы ДНК одной из наиболее мелких хромосом человека составляет 30 мм, что почти в 15 раз больше длины молекулы ДНК Е. соИ. Молекулы ДНК в сорока шести хромосомах человека не одинаковы по размеру они могут различаться между собой более чем в 25 раз. Эукариотические ДНК имеют не кольцевую структуру, а линейную. Каждая эука- [c.872]

    В гл. XIII мы уже указывали, что некоторые патологические отклонения от нормальной дифференциации пола связаны с отклонениями в числе половых хромосом. Так, нормальное число хромосом 46 в случае половых хромосом типа ХО будет равно 45, в случае XXX и ХХ — 47 и, наконец, в случае XXXV — 48. Что же касается аутосом человека, то в течение двух последних лет было обнаружено несколько различных типов трисомиков. Так, разные исследователи выяснили, что при болезни Дауна 2п = 47, причем лишняя хромосома— одна из самых маленьких аутосом (22-я). Недавно были описаны трисомики по 17-й хромосоме и по одной из хромосом группы 13—15 (см. фиг. 49,5). В каждом из этих случаев трисомия была связана с характерным спектром нарушений развития и умственной отсталостью. Надо еще выяснить, являются ли лишние хромосомы нормальными или же они несут хромосомные перестройки это удастся установить лишь в том случае, когда станет возможным анализ мейоза у подобных людей. Кажется вероятным, что люди с болезнью Дауна и с другими отклонениями от нормы представляют собой подлинных трисомиков и что их аномальные признаки обусловлены наличием лишних хромосом (см. стр. 346—348). [c.443]

    Половые клетки растения или животного содержат п хромосом. Это число широко варьирует у разных видов — от одной хромосомы до нескольких сотен, но оно постоянно для каждого вида, например у человека п 24. Когда при оплодотворении сперматозоид сливается с яйцеклеткой, образуется клетка, содержащая 2п хромосом так, для человека 2п 48 . Хромосомы половой клетки, как правило, все разные и в благоприятных случаях их можно различить по величине и форме под микроскопом. Каждая хромосома, внесенная мужской половой клеткой (за одним исключением), в основном идентична гомологична) соответствующей хромосоме, внесенной женской половой клеткой. Одна пара хромосом — половые хромосомы у многих животных, включая человека и плодовую мушку дрозофилу, — является исключением в том отношении, что в оплодотворенном яйце (или зиготе), которое разовьется в мужской организм, две хромосомы, составляющие пару, различны можно отличить Х-хромосому, внесенную яйцеклеткой, и У-хромосому, внесенную спермием. С другой стороны, зигота, которая должна дать женский организм, имеет две Х-хромосомы. Имеются спермин двух типов одни несут Х-хромосому и дают начало зиготам, развивающимся в самок, другие несут У-хромосому и образуют зиготы, дающие самцов. У птиц и бабочек гетерогаметная самка имеет хромосомы XY. Семенные растения и многие низшие животные не всегда имеют механизм определения пола типа XV. [c.105]

    Все ситуации и примеры, обсуждавшиеся в этой главе до сих пор, относились к наследованию генов, находяшихся в разньгх хромосомах. Согласно данным цитологических исследований, у человека все соматические клетки содержат по 46 хромосом. Поскольку человек обладает тысячами различных признаков, таких, например, как группа крови, цвет глаз, способность секретировать инсулин и т. п., в каждой хромосоме должно находиться большое число генов. [c.191]

    Внутри ядра имеются длинные образованпя — хроматиновые нити, с трудом видимые в покоящейся клетке, т. е. существующей в период между двумя делениями. Перед делением клетки хроматиновые нити образуют палочкообразные тельца — хромосомы. Число и форма их постоянны для данного вида организмов. В соматических (не половых) клетках высших растений и животных хромосомы существуют попарно, т. е. но две копии каждого типа. Такая пара хромосом называется гомологичной, подобный пабор хромосом — диплоидным. Клетки человека содержат 23 нары хромосом (46). Из общего правила, что в клетках с диплоидным набором каждая хромосома представлена двумя копиями, имеется исключение. Оно заключается в том, что в клетках женских особей одна пара хромосом содержит две одинаковые Х-хромосомы, а в клетках мужских особой — одну X- и одну У-хромосому, отсутствующую в женских клетках. В половых клетках (гаметах) число хромосом вдвое меньше — по одной хромосоме от каждой пары. Этот набор хромосом называют гаплоидным. [c.11]

    Но как бы не были близки и сходны виды, между ними всегда есть качественный разрыв, или гиатус, хотя бы по одному признаку, который и придает виду его неповторимость. Например, два вида, а возможно, даже рода черных крыс отличаются лишь тем, что один имеет 38, а другой 42 хромосомы. Известно 6 видов-двойников малярийного комара, раньше считавшегося одним видом. Только тщательное изучение всех их особенностей показало, что они отличаются друг от друга или географической определенностью, то есть местом обитания и распространения, или биологической специфичностью, когда одни впадают в диапаузу, а другие — нет, одни исключительно птаются кровью человека, другие редко или совсем не пользуются ею, или генетической индивидуальностью, отличаясь друг от друга числом хромосом. [c.144]

    Гаплоидный геном человека содержит 3-10 п.н. Повторяющиеся последовательности ДНК составляют около 30%. Количество копий этих последовательностей в геноме человека варьирует от единиц до нескольких тысяч. Остальные 70%, т.е. приблизительно 2-10 п.н., представляют собой уникальные последовательности, присутствующие в виде одной или единичных копий. Около 90% РНК, транскрибируемой с уникальной ДНК (гяРНК), не покидает ядро клетки. Только 10%, что соответствует в хромосоме 2-10 п.н., транспортируется в цитоплазму, где происходит трансляция. Исходя из того, что процессирован-ная мРНК, кодирующая белок, состоит в среднем из 1500 нуклеотидов, можно подсчитать, что человеческий геном содержит информацию для кодирования около 130000 белков (2-10 1 500= 130000). Часто структурные гены, кодирующие те или иные полипептиды, содержатся в геноме человека в виде нескольких копий. Нет точного способа определения доли таких генов или степени их повторяемости. Тем не менее есть основания полагать, что число различных полипептидов, кодируемых геномом человека, находится в диапазоне от 30000 до 100000. [c.293]

    Для оценки числа структурных генов в геноме человека можно предложить следующий подход. Известна нуклеотидная последовательность фрагмента ДНК величиной 60000 п.н., содержащего гены р-глобинового семейства (рис. 18.3). Этот фрагмент ДНК входит в состав одиннадцатой хромосомы и содержит пять функциональных структурных генов р, б, °7 и е, которые кодируют четыре различных полипептида (два гена 7 кодируют идентичные белки). Таким образом, на каждый белок приходится по 15000 (60000 4) пар нуклеотидов. Сходные данные получены при изучении генов а-глобинового семейства. Фрагмент ДНК величиной 30000 п.н., расположенный в щестнадцатой хромосоме, содер- [c.293]

Рис. 18.13. Распределение флуоресценции нормальных хромосом человека, полученное с помощью прибора, позволяющего разделить хромосомы на основе различий в уровне флуоресценции. Числа над пиками обозначают номера хромосом человека. Удается получить фракции, содержащие одну-две индивидуальные хромосомы. (По Zebo R. V. et al., 1979. Ргос. Natl. A ad. S i USA, 76, Рис. 18.13. Распределение флуоресценции нормальных хромосом человека, полученное с помощью прибора, позволяющего разделить хромосомы на основе различий в уровне флуоресценции. <a href="/info/3579">Числа</a> над пиками обозначают номера хромосом человека. Удается <a href="/info/290578">получить</a> фракции, содержащие одну-две индивидуальные хромосомы. (По Zebo R. V. et al., 1979. Ргос. Natl. A ad. S i USA, 76,
    Известна у человека и анеуплоидия по половой хромосоме. При наличии в клетках одной Х-хромосомы в отсутствие -хромосомы возникает синдром Тернера (это единственный известный у человека случай моносомии). Страдающие синдромом Тернера стерильны. Фенотипически это женщины с почти атрофированными яичниками и слабо развитыми вторичными половыми признаками. В число других характерных признаков синдрома Тернера входят низкий рост, деформация грудной клетки, крыловидная шея. Синдром Тернера обычно не сопровождается умственной неполноценностью. Встречается это заболевание с частотой примерно 1 на 5000 живых новорожденных. Более часто, а именно у одной из 700 женщин, количество Х-хромосом превышает две. Как правило, это особи, имеющие генотип XXX, однако выявлены женщины с четырьмя и большим числом Х-хромосом (см. табл. 21.3). Для женщин с трисомией по Х-хромосоме характерны пониженная плодовитость и, как правило, умственная отсталость. [c.65]

    Если два генетических маркера находятся в разных хромосомах, го сцепление между ними отсутствует, т. е. шансы на их совместную передачу потомству равны 50 50. То же справедливо и в отпошепии маркеров, локализующихся на противоположных концах одной и той же хромосомы, из-за большой вероятности их разделения в результате кроссинговера, частота которого в процессе мейоза, при образовании яйцеклеток и сперматозоидов, весьма высока (см. разд. 15.2.3). Чем ближе друг к другу два маркера в пределах одной хромосомы, тем больше вероятность того, что они не будут разделены кроссинговером, а значит, будут переданы потомству совместно. Проведя скрининг больших семейных групп на совместное наследование интересующего нас гена (например, гена, ответственного за какую-нибудь болезнь) и большого числа отдельных ПДРФ-маркеров, можно идентифицировать несколько ПДРФ-маркеров, окружающих данный ген. Таким путем удается локализовать последовательности ДНК, находящиеся поблизости от этого геиа, а в конце концов и ДНК, соответствующую самому этому гену (рис. 5-91). Этот метод используется для локализации многих генов, ответственных за болезни человека. После выделения такого гена можно подвергнуть детальному анализу его белковый продукт (см. разд. 4.6.12). [c.342]

    ДНК приматов необычна по крайней мере в одном отношении она содержит громадное количество копий двух носледовательностей, про которые можно сказать, что ими прямо-таки кишат наши хромосомы. Оба тина этих последовательностей перемещаются в геноме в ходе РНК-опосредованного процесса, требующего обратную транскринтазу. Одна из этих последовательностей-Ll-напоминает F-элемент у дрозофилы и in4-злемент у кукурузы. Полагают, что она кодирует обратную транскринтазу (см. табл. 10-3). Транспозоны обычно возникают при участии систем контроля с обратной связью, которая жестко регулирует их число в каждой клетке (и таким образом спасает клетку от возможного бедствия) тем не менее, у человека L1-элементы составляют около 4% от всей массы генома. [c.247]

    В отличие 01 яйцеклеток у сперматозоидов дифференцировка в основном осуществляется носле того, как они завершают мейоз и становятся гаплоидными. Благодаря цитоплазматическим мостикам, каждый развивающийся гаплоидный спермий может получать весь набор продуктов полного диплоидного генома. То, что дифференцировкой спермиев, так же как и дифференцировкой яйцеклеток, управляет диплоидный геном, важно по двум причинам. Во-первых, в исходном диплоидном геноме, как правило, содержится некоторое число дефектных аллелей -рецессивных летальных мутаций (разд. 15.1.4) гаплоидная клетка, получившая один из этих дефектных аллелей, весьма вероятно, погибнет, если она не будет обеспечена продуктами нормального аллеля, закодированными в других ядрах, которые его содержат. Во-вторых, у некоторых организмов (например, у человека) одни спермии получают при мейозе Х-хромосому. а другие - У-хромосому. Поскольку Х-хромосома содержит много весьма важных генов, отсутствующих в У-хромосоме, можно думать, что если бы не цитоплазматические мостики между развивающимися спермиями, то те из них, которые получили У-хромосому, не выжили бы, и в результате в следующем поколении не было бы ни одного мужчины. [c.40]


Смотреть страницы где упоминается термин Человек число хромосом: [c.197]    [c.33]    [c.74]    [c.41]    [c.27]    [c.31]    [c.439]    [c.454]    [c.480]    [c.218]    [c.182]    [c.36]    [c.39]    [c.35]    [c.95]    [c.107]    [c.30]    [c.207]    [c.316]    [c.333]    [c.208]    [c.38]   
Биохимия Том 3 (1980) -- [ c.71 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2024 chem21.info Реклама на сайте