Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы переноса протона, контролируемые диффузией

    Выше уже упоминалось, что кислотно-основной катализ играет очень важную роль в органической химии. Кислоты и основания катализируют реакцию, превращая реагент (субстрат) в реакционно-способный промежуточный продукт путем присоединения или отнятия протона. В конце процесса этот протон должен снова отщепиться или соответственно присоединиться. Для проявления каталитического действия необходимо обязательно наличие кислоты и [сопряженного) основания. Однако часто в скоростьопределяющей или предшествующей ей стадии принимает участие только кислота или основание. В таком случае только их концентрация входит в уравнение скорости (кислотный или основной катализ). Если же имеет место последовательность реакций с обратимыми стадиями перед скоростьопределяющей стадией, то предшествующие ей равновесия устанавливаются очень быстро. Такой случай встречается очень часто, поскольку реакции переноса протона в большинстве своем контролируются диффузией. Хотя в этом случае при кислотном катализе в растворителе Ь любая присутствующая в системе кислота не участвует в протонировании субстрата, однако благодаря быстро устанавливающемуся равновесию [c.159]


    Перенос протона при протекании реакции в экзотермическом направлении между ОН- и/или NH-кислотами и NH-основными функциями, который обходится без структурной реорганизации, является очень быстрым процессом. Реакции с участием Н 0+ или ОН обычно контролируются диффузией. Как было показано, во многих случаях они протекают через скачки протонов вдоль цепи связанных водородными связями молекул растворителя, соединяющей реаги- [c.402]

    При катализе сравнительно сильными кислотами и основаниями бренстедовские параметры а и близки к нулю. Дело в том, что скорость стабилизации промежугочного соединения в этом случае контролируется диффузией и не зависит от р а катализатора, поскольку перенос протона оказывается в высшей степени энергетически выгодным процессом. Этот эффект наблюдается в реакции присоединения метоксиамина к п-метоксибензальдегиду, катализируемои амина]ми с рКа 7 (см. рис. 6.1). При увеличении рКа катализирующей кислоты, когда перенос протона становится энергетически менее выгодным, наклон графика бренстедовской зависимости приближается к предельной величине а=1,0, следуя кривой Эйгена для простых реакций переноса протона (см. рис. 2.2) здесь скорость стадии переноса протона приближается к диффузионному пределу в обратном смысле. Излом на кривой (Ap/(a=0) соответствует условиям, когда рКа катализатора совпадает с рКа протонированного промежуточного соединения. Действительно, наблюдаемая точка излома лежит при рКа 8,6, что близко к значению рКа промежуточного соединения, равного приблизительно 9,1. Точки, соответствующие протону и гидроксид-иону, обнаруживают 10—50-кратное положительное отклонение от таких кривых, поскольку для них диффузионный предел процесса переноса протона лежит выше. Несмотря на свою простоту, вывод о совпадении графика бренстедовской зависимости и кривой Эйгена не является тривиальным. Такое совпадение обусловлено во многом различиями в поведении разных катализаторов. [c.121]

    Перенос протона на электроотрицательные атомы и обратно. Тот факт, что перенос протона на атом углерода и обратно может протекать с меньшей скоростью, чем другие процессы образования и разрыва связей, не вызывает сомнений. Что же касается переноса протона с участием электроотрицате.,1Ьных-атомов (кислорода, азота и серы), который часто контролируется диффузией, то его скорость обычно превышает скорость других процессов образования и разрыва связей (гл. 4). В связи с этим реакции общего кислотно-основного катализа, в которых имеют jMe TO процессы переноса протона с участием электроотрицательных атомов, представляют значительный пы-терес. Ниже рассмотрены некоторые типичные примеры реакций такого рода. При их обсуждении осповное внимание обращается на взаимосвязь переноса протона с другими процессами, происходящими в ходе этих реакций. Механизмы реакций этого типа можно разделить на две группы. К первой из них [c.127]


    Перенос протона от О—Н- или N—Н-кислоты к основанию происходит очень быстро и контролируется скоростью диффузии. В то же время отрыв протона от С—Н-кислоты является достаточно медленным процессом и в случае использования реакционноспособной карбонильной компоненты может контролировать скорость всей реакции в целом. Было, например, показано [157, гл. 12], что при альдольной конденсации ацетальдегида образуюш,ийся продукт не содержит дейтерия при атоме углерода при проведении реакции в тяжелой воде. Из этого следует, что скоростьопределяющей стадией является стадия ионизации  [c.424]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]


Смотреть страницы где упоминается термин Процессы переноса протона, контролируемые диффузией: [c.283]    [c.351]    [c.362]    [c.215]   
Смотреть главы в:

Катализ в химии и энзимологии -> Процессы переноса протона, контролируемые диффузией




ПОИСК





Смотрите так же термины и статьи:

Контролирующий процесс

Процесс диффузии



© 2025 chem21.info Реклама на сайте