Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции последовательные

    Эта первая стадия метаболизма состоит из 11 последовательных химических реакций, в которых глюкоза превращается во фруктозу, а затем в два производных глицеринового альдегида, содержащих три атома углерода. Лишь на одной-двух последних стадиях процесс разветвляется на различные маршруты, приводящие к пировиноградной кислоте, молочной кислоте, этанолу или ацетону. Каждая стадия гликолиза регулируется собственным катализатором, роль которого выполняет фермент с молекулярной массой 30000-500000. [c.327]


    Хотя в живых системах определить лимитирующие вещества гораздо труднее, чем в отдельных химических реакциях, нехватка ключевого продукта питания может иметь крайне отрицательные последствия для роста и здоровья растения, животного или человека. Во многих биохимических процессах продукты одних реакций служат исходными веществами для других. Если одна из реакций остановится из-за исчерпания ключевого (лимитирующего) вещества, то остановится вся последовательность превращений. [c.256]

    Известно очень мало химических реакций, которые могут быть точно описаны схемой двух последовательных реакций первого порядка. К этому типу относятся, например, хорошо известные схемы радиоактивного распада, включающие две или более последовательные стадии. [c.40]

    Применение изотопов при исследовании механизма химических реакций дает возможность определять скорости образования и расходования промежуточных продуктов, выяснять последовательность образования промежуточных веществ, устана вливать вещества, образующиеся параллельно из одного и того же предщественника, а также выяснить, какие связи разрываются в процессе реакции. Причем для правильного рещения вопроса о кинетике необходимо располагать сведениями о протекающих в системе обменных реакциях. [c.376]

    Если в системе проходит несколько параллельных и последовательных реакций, то, выбирая соответствующим образом параметры проведения процесса, можно изменить его направление и получить разные продукты с различными выходами. Для изменения энергии активации интересующей нас реакции иногда используются селективные катализаторы, т. е. ускоряющие только данную химическую реакцию. Благодаря применению селективных катализаторов и изменению параметров проведения контактного процесса можно из одного и того же исходного вещества получать разные продукты. [c.272]

    Поскольку адсорбция— лишь один из этапов процесса, прежде всего необходимо установить влияние хода адсорбции на скорость этого процесса. Согласно гипотезе Лангмюра — Хиншельвуда, на скорость поверхностной реакции (понимаемой как результат последовательного прохождения адсорбции исходных веществ, химической реакции и десорбции продуктов) решающее влияние оказывает сопротивление химической реакции. В соответствии с этим для каждого реагента устанавливается сорбционное равновесие, не нарушаемое прохождением химической реакции. Концентрация данного реагента на поверхности связана с его парциальным давлением в газовой фазе. Связь эту выражает уравнение изотермы Лангмюра. [c.278]


    Если скорость контактного процесса определяется сопротивлением поверхностной реакции (являющейся результатом последовательных этапов адсорбции исходных веществ, химической реакции и десорбции продуктов), то он проходит в кинетической области. В этом случае скорость такого процесса можно описать кинетическими уравнениями поверхностной реакции. В зависимости от принятых теоретических предположений вид этих уравнений может быть различным. [c.281]

    Два основных фактора определяют весьма существенную и общую для сложных радиационно-химических реакций последовательность типов элементарных процессов относительно малая скорость генерации активных частиц при типичных значениях мощности дозы, характерных для наиболее распространенных источников излучения, и высокие константы скорости ионно-молекулярных реакций. [c.382]

    Почему нагревание вызывает столь значительное ускорение химических превращений Для ответа на этот вопрос нужно вспомнить, 3 чем заключается сущность химической реакции. Химическое превращение происходит тогда, когда возникают условия для перераспределения электронной плотности столкнувшихся частиц. Этот процесс требует затраты времени и энергии. Мгновенных процессов в природе вообще не существует. Реакционноспособную систему можно охарактеризовать тремя последовательно совершающимися состояниями  [c.195]

    Иод сложными системами мы будем понимать такие системы, в которых происходит одновременно несколько химических реакций. К подобным системам относятся, например, системы двух и более последовательных или параллельных реакций. В соответствии с этим определением, строго говоря, можно считать сложными все химические системы. Действительно, как будет показано в следующих главах, даже простая система содержит и параллельные и последовательные реакции. Можно попытаться различать простые и сложные системы формально, считая сложными все те реакции, скорость которых во всем доступном диапазоне условий эксперимента нельзя описать уравнением какого-либо простого порядка. Для таких реакций характерны систематические отклонения от всякого простого закона скорости, выходящие за рамки возможных ошибок эксперимента. [c.90]

    В предпламенной зоне и в пламени протекает большое число различных параллельных и последовательно-параллельных химических реакций. Из этого множества реакций для каждых конкретных условий (температура, давление, состав смеси, газодинамические факторы) могут быть выделены оптимальные траектории движения процесса. Последние представляют собой такую сумму элементарных реакций, при которой превращение смеси в конечные продукты происходит с максимальной скоростью. При изменении внешних условий выбор оптимальной траектории движения процесса осуществляется автоматически. [c.122]

    Как следует из зависимости (УП1-168), скорость превращения, состоящего из двух последовательных этапов —диффузии исходного вещества к межфазной поверхности и химической реакции первого порядка на этой поверхности, можно также выразить кинетическим уравнением первого порядка относительно концентрации исходного вещества в ядре потока. Тогда константа скорости [c.247]

    Укрупненная типовая операционная ППР для определения вероятного механизма химической реакции и построения кинетической модели включает пять этапов 1) сбор априорной информации и предварительная обработка априорной информации с выяснением основных кинетических закономерностей 2) выдвижение системы гипотез о механизме реакции и построение кинетической модели для каждого механизма 3) построение стартового плана эксперимента с использованием имеющейся априорной информации и учетом выбранного критерия оптимальности затем проводятся предварительная проверка адекватности и оценка констант конкурирующих кинетических моделей, отбраковка неадекватных гипотез 4) проведение последовательно планируемых прецизионных экспериментов и уточнение оценок констант 5) дискриминация конкурирующих кинетических моделей с целью выбора одной наиболее соответствующей результатам эксперимента. [c.170]

    Прежде всего, отмечаем, что в одной из фаз (реже в обеих) протекает ряд последовательных и параллельных химических реакций. Описание совокупности химических реакций (химизм процесса) представляет собой химическую модель процесса. Изучение химической кинетики дает кинетическую модель процесса, которая описывает зависимость скоростей реакций, включенных в химическую модель, от температуры и концентраций реагентов. [c.22]

    Понятие каталитического крекинга охватывает группу сложных химических реакций, протекающих как одповременно, так и последовательно, среди которых можно отметить разрыв углерод-углеродной связи, приводящий к гетеролитическому расщеплению молекулы, изомеризацию (включая изомеризацию скелета молекулы и смещение двойной связи). [c.140]

    Как уже отмечалось выше, это уравнение объединяет 20 химических реакций, происходящих с участием 22 ферментов. По одной молекуле глюкоза проходит эту последовательность в каждой клетке тела. Энергия, запасенная молекулой глюкозы, шаг за шагом освобождается в отдельных реакциях и немедленно запасается во временном хранилище - АТФ. [c.445]


    Из этого простого примера ясно, что вопрос о том, какая из двух или более последовательных стадий является лимитирующей, состоит не в каком-либо различии фактических скоростей (так как при установившемся режиме они равны), а скорее в различии коэффициентов, характеризующих процесс. Если экспериментально установлено, что некоторый фактор, удваивающий коэффициент к, увеличивает в 2 раза фактическую скорость процесса в целом, тогда как факторы, влияющие на величину 01х, не дают такого эффекта, то можно заключить, что процесс лимитируется химической реакцией и наоборот. [c.38]

    Характерная особенность этого гиперпространства — наличие потенциальных ям (которые отвечают образованию химических связей), отделенных друг от друга барьерами. Каждая точка гиперпространства отвечает определенному состоянию реагирующей системы, и химическая реакция может быть представлена как движение некоторой изображающей точки по потенциальному гиперпространству. Последовательность состояний, занимаемая изображающей точкой, называется путем реакции, а координата (д)— координатой реакции. [c.67]

    Авторы не затрагивают перемешивания твердых частиц, хотя оно может играть существенную роль, особенно в случае теплонапряженных химических реакций. Поскольку происходит коалесценция пузырей, межфазный коэффициент обмена теоретически рассчитывают (см. гл. V) последовательно для каждого участка в слое, внутри которого высота газовой пробки постоянна. Одновременно сделано важное допущение в месте коалесценции газовых пробок потоки газа в дискретной и непрерывной фазах полностью смешиваются. Таким образом, весь реактор рассматривается как бы составленным из нескольких последовательно соединенных реакторов (рис. VII-17). В результате такого допущения режим в значительной мере приближается к стержневому (идеальное вытеснение) и конверсия в реакторе повышается. Однако остается неясным, каким образом происходит смешение газа из разных фаз при коалесценции двух газовых пробок. [c.275]

    Исследуя влияние давления на скорость реакции, нужно помнить о том, что стехиометрические уравнения большинства химических реакций не отражают их механизма и в действительности превращение проходит как несколько следующих одна за другой простых реакций разного порядка. В качестве примера можно использовать реакцию синтеза метанола СО + 2Нг = СН3ОН, которая протекает не как реакция третьего порядка, а, вероятно, как две последовательные реакции второго порядка. Поскольку влияние давления на скорость реакции меньше в случае реакций более низкого порядка, теоретическое предвидение такого влияния не может быть основано на стехиометрическом уравнении реакции. Если механизм процесса неизвестен, то обязательно нужно определить порядок кинетического уравнения экспериментальным путем. [c.235]

    В случае сложных процессов, когда целевым является один из промежуточных продуктов (последовательная химическая реакция), аппарат вытеснения, очевидно, более предпочтителен. Если, однако, для осуществления процесса требуется длительное время (процессы полимеризации, биологические процессы), то аппарат в виде трубы или пучка труб неудобен. В этом случае используют аппараты типа куба или нескольких последовательно соединенных кубов (каскад кубовых аппаратов). Выше показано, что каскад кубовых аппаратов при значительном числе кубов приближается по характеристикам к аппарату вытеснения того же объема. Аппараты перемешивания удобны также, если процесс следует осуществлять лишь в определенном интервале концентраций, например при низких концентрациях исходного вещества. [c.110]

    Данные о кинетике химических реакций можно получать, изучая процессы,, протекающие в реакторах периодического или непрерывного действия. При применении периодическидействую-щих реакторов исходные реагенты загружают в аппарат через определенные промежутки времени и наблюдают за ходом процесса. При использовании реакторов непрерывного действия реагенты непрерывно поступают с заданной скоростью либо в смеситель в виде сравнительно длинной узкой трубы, либо в несколько последовательно соединенных смесителей за ходом реакции наблюдают после достижения стационарного состояния в нескольких точках по длине аппарата. [c.14]

    Для многостадийных процессов сравнение различных режимов требует четкого формулирования критерия оптимальности, т. е. той величины, по которой оценивается результат процесса. Например, если протекает последовательная химическая реакция, причем первая стадия имеет более низкую энергию активации, чем вторая, и целевым является промежуточный продукт, то возможно формулирование двух разных, но похожих критериев  [c.111]

    Если химическая реакция протекает в несколько последовательных элементарных стадий, уравнение реакции можно получить из уравнений стадии, для чего эти уравнения надо умножить на некоторые числа, называемые стехиометрическими. Ниже приведены примеры возможных элементарных стадий взаимодействия молекул реагентов с катализатором Z) и стехиометрические числа для синтеза аммиака  [c.176]

    Химическая реакция (последовательность химических реакций) преобразует исходный ЕМ в изомерный путем перераспре- [c.444]

    Смеси, принадлежащие к тому или иному классу, типу и подтипу, характеризуются специфическим поведением компонентов при осуществлении фазовых процессов, например, таких, как дистилляция и ректификация [29, 44, 45]. Так, в процессе непрерывной ректификации для смесей определенного класса, типа и подтипа характерны как специфическое поведение отдельных компонентов по высоте ректификационного аппарата, так и вполне определенная последовательность выделения фракций предельно возможного состава при переходе от одной колонны к другой в технологической схеме ректификации. В реакционно-ректификационных процессах, где скорость химической реакции конечна, зона реакции, как правило, сосредоточена в какой-то части аппарата, а в остальных частях идет обычная ректификация. Полный термодинамико-топологический анализ всей диаграммы в целом дает возможность не только разместить зону реакции в наиболее благоприятных условиях относительно концентраций реагентов, но и выявить определенные ограничения по составу конечных продуктов ректификации. Эти ограничения обусловлены тем, что в случае наличия азеотропов в рассматриваемой смеси, соответствующий этой смеси симплекс составов распадается на ряд ячеек, названных областями непрерывной ректификации [29], причем каждая ячейка характеризуется предельно возможными составами конечных фракций, которые можно получить в одном ректификационном аппарате непрерывного действия. Возможные конфигурации областей непрерывной ректификации и их границ рассмотрены в работах 29, 46]. [c.194]

    Так получены уравнения для динамики химических реакторов при возмущениях по потокам реахентов в аппаратах с перемешиванием. Для химической реакции последовательного ч ипа эти уравнения имеют вид  [c.19]

    Для неэлементарных реакций, когда стехиометричвские коэффициенты не отвечают математической модели скорости реакции, необходимо гииотезировать механизм сложной химической реакции последовательностью простых реакций и далее установить соответствие между экспериментальными данными, найденными по скорости реакции и принятому механизму процесса. [c.365]

    В VIII классе при изучении химических реакций последовательно используют несколько средств обучения. Химический эксперимент позволяет внешне увидеть проявление реакции, материальные модели позволяют объяснить этот факт на уровне атомно-молекулярного учения как процесс перегруппировки атомов и изменения состава веществ и, наконец, с помощью знакового моделирования выводят сущность реакции — составляют химическое уравнение. [c.158]

    Отметим, что даже в таком упрощенном примере системы неправильно было бы утверждать, что совмещенные химическая реакция и ректификация находятся, например, в связи друг с другом как только последовательные или только параллельные процессы. Здесь имеют место элементы и той, и другой связи во времени. Последовательная связь прослеживается хотя бы в том, что до начала ректификации тройной смеси АВС необходимо предварительное образование вещества С за счет химической реакции. Параллельная связь видна из того факта, что при поступлении смеси реагентов А и В в колонну нач1тается как химическое превращение их, так и ректификация еще бинарной смеси АВ. [c.190]

    Непосредственное экспериментальное изучение кинетики тон или иной химической реакции только в исключительных случаях позволяет отнести ее к одной из указанных групп. Это удается сделать только для так называемых простык реакций, протекающих в одну стадию, уравнение которой совпадает со стехиометрическим уравнением реакции в целом (например, разложение и синтез иодистого водорода, разложение двуокиси азота и нитрозилхлорида и некоторые другие). Большинство же химических реакций является совокупностью нескольких последовательных (а иногда и параллельных) элементарных реакций, каждая из которых может принадлежать к любой из указан-ных выше кинетических групп. Это обстоятельство неизбежно осложняет кинетику процесса в целом, Б простейшем случае, f если одна из элементарных реакций протекает значительно Т> медленнее остальных, наблюдаемый кинетический закон будет соответствовать именно этой реакции. Если же скорости от-дельных стадий сравнимы, экспериментальная кинетика может быть еще более осложнена. [c.17]

    Гетерогенные реакщт проходят через ряд последовательных стадий 1) диффузию молекул реагирующих веществ к поверхности раз-.цела фаз, где происходит химическое взаимодействие, 2) собственно химическую реакцию, 3) диффузию образующихся продуктов из зоны [c.428]

    Ond а К., Sad а E., Kobayash i Т., Fuj ine М., hem. Eng. S i., 25, 753, 761, 1023 (1970). Абсорбция, сопровождаемая сложными (обратимыми, последовательными и параллельными) химическими реакциями (уравнения для расчета коэффициента ускорения, полученные путем точного и приближенного решения дифференциальных уравнений диффузии на основе пленочной модели). [c.286]

    Применение закона Гесса избавляет от проведения большого числа излищних экспериментов в термохимии (так называется раздел химии, посвященный теплотам реакций и энергетическим свойствам веществ). Совершенно не обязательно измерять и табулировать изменение энтальпии каждой возможной химической реакции. Например, если известны теплота испарения жидкой воды [уравнение (2-10)] и теплота разложения пероксида водорода с образованием жидкой воды [уравнение (2-9)], то совсем не обязательно измерять теплоту разложения пероксида водорода с образованием водяного пара эту величину гораздо проще получить путем вычислений. Если какая-либо интересующая нас реакция трудно поддается проведению в лабораторных условиях, нужно попытаться подобрать последовательность легче осуществляемых реакций, сумма которых дает необходимую реакцию. После измерения изменений энтальпии для всех индивидуальных реакций в такой последовательности можно просуммировать соответствующие изменения энтальпии подобно самим химическим уравнениям и найти теплоту труднопроводимой реакции. [c.92]

    Усиление интереса к указанному методу в настоящее время в значительной степени объясняется прогрессом ЭВМ. Последнее обстоятельство позволяет производить количественные аЬ initio расчеты многоатомных молекул, хоть и более сложным в вычислительном отношении, но зато и более точно описывающим энергетику и механизм химических процессов, методом ВС. При этом в наши дни не только проводится его последовательная численная реализация в расчетах конкретных, постепенно усложняющихся молекулярных систем, но также ведется дальнейшее совершенствование формализма. В частности У. Годдардом был разработан обобщенный метод ВС, который был с успехом применен как для расчета и качественного рассмотрения отдельных соединений, так и для анализа механизмов химических реакций. [c.170]

    Система ДИАХИМ [53] (Диалоговая система для химических научных исследований) была разработана в МГУ в качестве логического продолжения системы АСУМ МС (Автоматизированная Система Управления Моделями Молекулярных Систем). Система ДИАХИМ в отличие от американских систем сразу была ориентирована на работу именно с пространственными трехмерными моделями молекулярных систем. Особенностью этой системы является то, что задача автоматизации химических исследований ставится здесь как задача дискретного оптимального управления. При таком подходе все поисковые задачи (а сннтез заданного химического вещества в конечном счете — тоже поиск последовательности химических реакций, приводящих к нужному результату) оказываются тождественными по своей структуре и различаются лишь видом конкретного функционала задачи управления и физическим смыслом фазовых и управляющих переменных. [c.54]

    Итак, если молейула имеет N атомов, то размерность соответствующей и-матрицы N X N. На главной диагонали записываются неподеленные пары электронов всех последовательно расположенных N атомов молекулы, а недиагональные элементы определяют характер связи (одинарная, двойная, тройная и т. п.) между соответствующими атомами. Определим теперь для каждой элементарной реакции ансамбль молекулы (АМ) как совокупность молекул — исходных реактантов или совокупность молекул — конечных продуктов реакции. Нетрудно видеть, что математическое представление АМ есть блочно-диагональная i e-мaтpицa, составленная из 2 -матриц, которые находятся на главной диагонали. Совокупность всех возможных АМ образует семейство изомерных АМ (СИАМ), которое характеризует химические превращения реактантов. Конечно, множество всех АМ из СИАМ может быть однозначно представлено совокупностью Р = В ,. . ., В -Ве-матриц. Причем каждая Де-матрица содержит всю информацию о химической структуре молекул, составляющих заданный АМ, т. е. всю информацию о распределении связей и об определенных аспектах распределения валентных электронов. Поэтому каждая химическая реакция будет представлять собой не что иное, как взаимопревращение АМ вследствие перераспределения электронов между атомными остовами. [c.174]

    При однофазном потоке, как и в газовой фазе, процессы превращения веществ протекают в несколько стадий 1) подвод реагентов пз ядра потока к вненшей поверхности катализатора 2) диффузия реагентов в порах катализатора из раствора к его внутренней поверхности 3) адсорбция реагентов 4) собственно химическая реакция на поверхности катализатора 5) отвод продуктов реакции через стадии десорбции и внутренней, и внешней диффузии. При двухфазном потоке вследствие того, что катализатор смачивается одной пз фаз, эта последовательность не нарушается, однако ей предваряется либо за ней следует стадия диффузии реагентов или продуктов в дисперсную фазу. Особенно четко это проявляется в газожидкостных реакциях, где катализатор пропитан жидкостью или покрыт ее пленкой. Диффузия из одной фазы потока в другую, которую обозначим как межфазную, протекает в общем так же, как и в случае двухфазных систем без твердого катализатора (см. гл. И). Межфазная диффузия не имеет, собственно, прямого отношения к гетерогенно-каталитической реакции, но доляша учитываться при расчетах реакторов (см. гл. 10). Поэтому в настоящей главе рассматриваются только явления, происходящие в системе раствор — твердый катализатор. [c.47]


Смотреть страницы где упоминается термин Химические реакции последовательные: [c.12]    [c.89]    [c.123]    [c.15]    [c.330]    [c.287]    [c.73]    [c.351]   
Общая химия (1984) -- [ c.217 , c.218 ]

Физическая и коллоидная химия (1960) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика массопередачи с последовательно-параллельными химическими реакциями

Кинетика последовательно-параллельных химических реакций первого порядка

Кинетика последовательных гетерогенных химических реакций и ее приложение для кинетического анализа реакций каталитического крекинга

Молекулярная адсорбция из паровой фазы в связи с последовательной химической реакцией

Напишите последовательность химических реакций, которые произойдут при растворении цинка в очень разбавленной азотной кислоте и последующем постепенном прибавлении к полученному раствору раствора щелочи

Последовательные и параллельные стадии в сложных химических реакциях

Промежуточные вещества в химических превращениях. Последовательные реакции

Реакции последовательные

Химические реакции, идущие последовательно в батарее реакторов



© 2025 chem21.info Реклама на сайте