Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие процессы, определяющие скорость горения

    Таким образом, повышение температуры подогрева топлива приводит к суш,ественному уменьшению критерия Л < 1 и сокращению периода испарения. Однако полностью задачу горения потока распыленного жидкого топлива нельзя сводить к задаче испарения одной капли. В ряде опытов топливо предварительно доводилось до парообразного состояния и затем вводилось в реакционный объем. Если бы скорость горения определялась одним только испарением капель, то парообразное топливо при вводе вторичного воздуха должно было бы сгореть мгновенно или по крайней мере на очень коротком участке. На самом же деле этого не происходит, как и при горении газообразного топлива. Время и протяженность горения зависят от ряда других факторов гидродинамики, диффузии, скорости реакций в условиях теплообмена между факелом и окружающими стенками и т. д. Процесс горения даже термически подготовленного топлива протекает в течение определенного времени, хотя и приближается по характеру к процессу выгорания газообразного топлива, т. е. к гомогенному горению. При этом для эффективного сгорания термически подготовленного жидкого топлива, вводимого в реакционное пространство в парообразном состоянии, требуется не только хорошее смешение с окислителем, но и температура окислителя не ниже температуры топлива. [c.67]


    Вентиляция является важным средством создания нормальных санитарно-гигиенических условий на химических предприятиях. Сущность процесса вентиляции заключается в том, что из производственного помещения непрерывно удаляется загрязненный воздух и одновременно подается свежий воздух в таком количестве, при котором концентрация вредных веществ в воздухе будет ниже предельно допустимой, а температура, влажность и скорость движения воздуха соответствуют санитарным нормам. Количество подаваемого в производственное помещение свежего воздуха определяется назначением системы вентиляции и рассчитывается на основании количества тепла, вЛаги и вредных веществ, поступающих в помещения при этом учитывается количество воздуха, удаляемого из рабочей зоны местными отсосами от оборудования, общеобменной вентиляцией, а также направляемого на технологические или другие нужды (на горение, сушку и т. п.). [c.100]

    Эксперименты подтвердили принятую модель процесса горения крупных частиц сланца. Изменение температуры центра и выхода летучих из частицы диаметром 12 мм во времени при температуре печи 910 и 1010° К в потоке азота, которое характерно для частиц, представлено на рис. 1, с другим диаметром. Графики показывают, что выход летучих веществ заканчивается раньше завершения прогрева частицы до температуры печи. Это свидетельствует о том, что скорость процесса лимитируется интенсивностью поступления тепла к фронту разложения керогена. В другом случае, если скорость процесса определялась бы кинетикой реакции разложения керогена, время прогрева частицы до температуры печи оказалось бы меньше времени выхода летучих. В сложном теплообмене между греющей средой и частицей в условиях опытов преобладающее значение имеет лучистый тепло-перенос. Вследствие этого время выхода летучих находится в зависимости от температуры среды. Увеличение диаметра частицы и исходного количества органического вещества в сланце приводит к увеличению времени процесса, поскольку возрастает термическое сопротивление доставке тепла к фронту разложения и затраты тепла на разложение керогена во фронте. Эмпирическая обработка зависимости времени выхода летучих веществ от указанных факторов представлена на рис. 2 и описывается следующей формулой  [c.89]

    Одним из перспективных направлений исследования в последнее время явились работы, в которых авторы из всего многообразия зон горения выделяют ведущую зону, которая может определять скорость горения конденсированного вещества. Для этой цели было введено понятие элементарных моделей горения, которые описывают простейшие одностадийные режимы горения конденсированных систем и, по существу, рассматривают процессы, протекающие в ведущей зоне, изолированно от других процессов [14]. [c.270]


    Как уже говорилось во введении, процесс горения слагается из двух стадий подвода окислителя (и отвода продуктов сгорания) за счет молекулярной или турбулентной диффузии (смешения) и протекания химической реакции. В зависимости от условий либо та, либо другая стадия может стать определяющей, либо влияние диффузионных и кинетических факторов может быть сопоставимым. Если скорость химической реакции гораздо больше скорости диффузии, то определяющей является диффузия, процесс горения протекает в диффузионной области. В противоположном случае процесс определяет кинетика (кинетическая область горения). При сопоставимом влиянии диффузии и кинетики процесс протекает в промежуточной области. [c.63]

    Гетерогенными называются реакции между веществами, находящимися в различных контактирующих фазах, например окисление металлов, травление металлов и полупроводников жидкими травителями, горение твердого и жидкого топлива и т. д. Особенность этих процессов — сложность и многостадийность, В них есть стадии переноса веществ. Сначала переносятся реагирующие вещества к поверхности раздела фаз. Вторая стадия — сама химическая реакция, третья — отвод продуктов реакции из реакционной зоны. Так как скорости всех стадий пропорциональны поверхности раздела фаз, то скорость гетерогенной реакции зависит от отношения поверхности к объему. Общая скорость определяется скоростью наиболее медленной стадии. Если же скорости отдельных стадий близки друг к другу, то более быстрые стадии могут оказывать влияние на скорость более медленной. [c.60]

    Следует отметить специальный случай, когда процесс построения решения значительно упрош ается. Если рассматриваемый радикал не участвует в создании цепи, а просто производится и потребляется в ходе несущественных побочных реакций, то скорость горения и распределения концентраций всех других компонентов в пламени фактически не зависит от наличия этого радикала. Следовательно, структура пламени (за исключением распределения концентрации Х ) может быть полностью определена, если в описывающих пламя уравнениях положить Х = 0. После того как будет определена структура пламени величины а, Ъ и коэффициенты линейного дифференциального оператора 3) (Х ) становятся известными функциями X. При этом уравнение (100) сводится к линейному неоднородному дифференциальному уравнению с известными коэффициентами, поэтому при применении описанного выше метода решения нет необходимости на каждом шаге заново рассчитывать (нри помощи уравнений, описывающих пламя) величины и Ъ, которые остаются неизменными. В случае очень малых отклонений от стационарного состояния часто оказывается целесообразным при последовательных шагах не производить перерасчет функций 3) ж Ь даже в случае радикалов, участвующих в цепном процессе.  [c.190]

    Другой метод расчета скорости гетерогенных химических реакций рассматривался Нуссельтом [Л. 36], который использовал в качестве модели процессов переноса перемешивающееся течение Рейнольдса (Л. 37]. В дальнейшем он показал, что величина, характерная для этой модели, — масса жидкости, попадающая из невозмущенного потока на стенку, отнесенная к единице ее поверхности и единице времени, может быть вычислена по измерению коэффициента теплоотдачи при отсутствии химической реакции, Нуссельт, в частности, интересовался горением угля в потоке окисляющего газа, но данная методика, очевидно, может быть применена к каталитическим реакциям. Вклад Нуссельта в разработку вопроса имел важное значение, так как это позволяло определить сопротивление переносу массы в процессе реакции, что невозможно было сделать на основании теории Нернста—Хеймана до замены понятия застойной зоны понятием пограничного слоя , разработанного современной аэродинамической теорией. [c.183]

    Если смесь горючего газа с воздухом предварительно тщательно приготовлена (в инжекционных или механических смесителях), то горение в целом лимитируется собственно реакцией горения (кинетикой горения) и весь процесс идет в кинетической области. Во всех других случаях, когда из сопла вытекает недостаточно перемещанная смесь или при смешении струй газа и воздуха вне горелочных устройств, имеет место горение в диффузионной области, так как оно определяется скоростью диффузии воздуха к реагирующему топливу. [c.48]

    Кинетика гомогенных реакций представляет самостоятельный интерес, так как рассматривает реакции, важные для металлургии, например горение метана, окиси углерода и других газов. Кроме этого, кинетика гомогенных реакций позволяет глубже изучить их механизм, т. е. найти промежуточные состояния и пути, по которым реализуются химические превращения. В этой связи следует подчеркнуть, что химическая реакция обычно состоит из нескольких более простых стадий или процессов, связанных, например, с переходом атомов или молекул в возбужденное состояние, с образованием неустойчивых промежуточных соединений. Такие промежуточные превращения называются элементарными актами. Сочетание нескольких элементарных актов и определяет скорость химической реакции, которая может быть найдена опытным путем, например, химическим анализом образовавшихся продуктов или по уменьшению концентрации исходных веществ, [c.165]


    Наблюдаемое нами и регистрируемое фотоаппаратом распространение пламени в горючей смеси представляет собой наложение двух отдельных процессов. Один из них — движение фронта пламени вследствие перемещения зоны реакции в несгоревший газ другой — движение фронта пламени в результате конвективного движения газа. Так как термином скорость пламени обычно обозначают скорость перемещения пламени в пространстве, то скорости его движения относительно свежей, несгоревшей смеси надо дать другое наименование. Мы будем называть скорость, с которой свежая смесь поступает в пламя по нормали к его поверхности, скоростью горения. Скорость конвективного движения газа в направлении нормали к фронту пламени, очевидно, представляет собой разность между скоростью пламени в этом направлении и скоростью горения. Скорость горения определяется такими факторами, как скорость реакции, диффузия и теплопроводность. Конвективное движение газа—сравнительно более простой процесс. Его влияние на скорость пламени может быть весьма сильным. Поэтому, а также потому, что конвективное движение можно до некоторой степени регулировать, изучение этого процесса весьма существенно для решения технических задач, связанных с горением. [c.170]

    Горение жидкого топлива рассматривается как процесс горения его паров, капли рассматриваются лишь как источник пара. Предполагается, что скорость, или время, испарения определяется константой, соответствующей условиям испарения одиночной капли. С другой стороны, горение паров топлива, т. е. реакция химического взаимодействия молекул топлива и кислорода, происходит в условиях как бы гомогенной смеси со скоростями, зависящими от местных концентраций, реагирующих веществ и температуры. [c.66]

    Рассмотрим теперь горение в турбулентном потоке. Основная информация об этом процессе получена при измерениях аналогов величин и S , соответственно скорости распространения турбулентного яламени и, и протяженности зоны горения 6г. Эти понятия определены, однако, не столь четко, как в теории ламинарного горения. Напомним, что величина 4 характеризует удельную скорость переработки свежей смеси на поверхности фронта пламени и равна отношению объемного расхода смеси к площади его поверхности. Такую поверхность можно определить равенством с = = Со = onst. Как свидетельствуют проведенные выше оценки, толщина фронта пламени мала по сравнению с характерными размерами задачи. Следовательно, площади разных изотерм с = Со слабо отличаются друг от друга. В турбулентном потоке величина 6, всегда порядка характерного размера задачи, и поэтому площади осредненных изотерм (с) = Со = = onst значительно различаются. [c.217]

    Таким образом, результаты исследования структуры горящего факела двухфазной топливо-воздушной смеси (главным образом легких топлив) позволяют заключить, что горение распыленного топлива может протекать в виде как горения отдельных капель и их совокупностей, так и горения газо-воздушных смесей. Непосредственных данных о структуре факела тяжелых остаточных топлив типа мазутов и крекинг-остатков нет. Однако основываясь на данных, приведенных в гл. 1, можно предположить с достаточной степенью достоверности, что процесс сгорания факела тяжелого топлива будет развиваться в условиях более четко выраженного дискретного строения факела. Это, естественно, не означает, что при сжигании тяжелого топлива исключается горение его иаров в пространстве между каплями. Но, как следует из материалов гл. 1, их количество определяется не столько свойствами топлива, сколько внешними условиями горения, если понимать под этим температуру, скорость, состав среды, а также размеры капель в факеле. В зависимости от этих условий количество иаров топлива, вышедших за пределы индивидуальной зоны горения капли тяжелого топлива, будет изменяться в ту или иную сторону, оставаясь, однако, всегда значительно меньшим, чем для капли легкого топлива, находящейся в идентичных условиях. Из этого непосредственно следует, что при сжигании тяжелых топлив в основном должна сохраняться вся последовательность элементарных стадий, наблюдаемых ири развитии процесса горения одиночной капли, хотя на длительности каждой из них будет сказываться влияние других капель, расположенных в непосредственной близости. [c.70]

    Богатый и бедный пределы устойчивого горения определяли при заранее установленных скоростях в камере сгорания. Сначала устанавливали скорость воздуха при одном из контрольных значений скорости распыла, равных 120, 150 и 187,5 ж/се/с, затем подавали и поджигали топливо и скорость его небольшими скачками изменяли до тех пор, пока не исчезало пламя. Этот процесс повторяли при достаточно малых изменениях скорости топлива с тем, чтобы установить равновесное значение соотношения топливо/воздух в момент срыва. Если при самых высоких скоростях распыла не удавалось получить устойчивого горения, как это наблюдалось в случае дизельного топлива или топлива С, то зажигание осуществлялось при несколько меньшей скорости и фиксированной скорости топлива. Постепенно увеличивая скорость воздуха при данном расходе топлива, приближались к пределу срыва. Это повторялось при других скоро- [c.294]

    В уравнениях, устанавливающих влияние химической структуры на реакционную способность веществ, используется в основном отношение констант скоростей реакций исследуемого и сравниваемого (соединение без заместителя) веществ. Отсутствие в большинстве случаев данных ио соответствующим параметрам для реакций горения определило необходимость изыскания другого характерного показателя реакционной способности веществ в этих процессах. [c.90]

    Масляный туман и пары летучих фракций вместе с газом поступают в межступенчатые коммуникации и в нагнетательный трубопровод. Здесь окислительный процесс продолжается, и на стенках коммуникаций также отлагается нагар. Слой нагара состоит из элементов, являющихся промежуточными продуктами окисления масла, большого количества свежего неокис-лившегося масла, окислов металла трубопровода, воды и других примесей. При высоких давлениях и температурах воздуха, а также при наличии катализаторов процесса (вода, окислы металла) скорость реакции окисления возрастает. Так как эта реакция происходит с выделением тепла, то нагар разогревается, что вызывает, в свою очередь, новое ускорение реакции окисления и повышение температуры. В конечном итоге может произойти так называемое самовозгорание нагара. Последнее особенно опасно, если концентрация паров масла достигает 32—40 мг л, что может привести к возникновению взрыва. Поэтому важным качеством масел являются температуры вспышки и воспламенения. Обе эти температуры определяются при нагревании масла в открытом тигле. При температуре вспышки смесь паров масла и окружающего воздуха над зеркалом свободной поверхности масла загорается от источника огня и сразу же гаснет. Температура воспламенения при этих же условиях даст горение масла в течение 5 сек. [c.335]

    ДЕФЛАГРАЦИЯ (deflagration) - режим сгорания парового облака (а также других взр1лвчатых веществ и смесей). В соответствии с классическим определени< М распространение пламени в этом режиме происходит посредством процессов диффузии и теплопроводности, а скорость горения меньше скорости звука. Расширение продуктов горения при дефлаграции может приводить к возникновению движения среды, волны сжатия и, в ряде случаев, ударной волны. При этом, хотя скорость распространения горения по частицам определяется процессами теплопроводности и диффузии (вообще говоря, турбулентными), видимая скорость распространения горения может приближаться к скорости звука и даже превосходить ее. В современной литературе под дефлаграцией понимается весь спектр процессов горения - от распространения ламинарного пламени, до высокоскоростных процессов с ударными волнами, в которых отсутствует жесткая связь между ударным фронтом и фронтом химического превращения, которая имеет место при детонации. Основным поражающим фактором при высокоскоростной дефлаграции является ударная волна. -См. разд. 12.3.4.5. [c.594]

    Однако, если условие постоянства теоретического избытка воздуха (а = 1) является непременным для всего фронта горения диффузионного факела, то значение других характеристик не может сохраняться от зоны к зоне, так как фронт горения постепенно качественно изменяется чем дальще от начала факела, тем больше топливный газ балластируется в зоне мертвыми продуктами сгорания, уменьщая свою теплотворную способность (/Сг ) Это вызывает соответствующее уменьщение и теоретического расхода окислителя, в противовес чему расход последнего начинает значительно расти вследствие все большего забалластиро-вания окислителя такими же продуктами сгорания (к ,ц Т ) в зоне // . Наконец, при естественном развитии процесса в потоке, т. е. при взаимном выравнивании скоростей его отдельных слоев, в конце факела заметно ухудшается интенсивность смесеобразования, которая при прочих равных условиях определяет скорость сгорания образующейся горючей смеси, иначе говоря, удельное тепловыделение на единицу поверхности фронта сгорания (9 , 1 ккалчас). Следствием падения удельного тепловыделения должно явиться ухудшение теплового баланса конечных зон факела, которое не может быть [c.188]

    Особенно важно установить критерии разрушения, так как они позволяют прогнозировать пределы безопасной эксплуатации двигателя или его транспортировки и определять недопустимые режимы нагружения. Существуют разные подходы для идентификации недопустимых отклонений. Можно использовать определение, основанное на отклонениях параметров рабочего процесса РДТТ от номинальных, например отклонениях давления в двигателе, времени сгорания заряда, скорости горения и т.д. Некоторые из такого рода аномалий можно непосредственно связать с целостностью топливного заряда. Для определения разрушения используются и другие подходы, например, считают, что разрушение наступает при появлении первой видимой трещины или при разрыве образца, при достижении максимального значения напряжения на кривой напряжение — деформация или при максимально допустимом возрастании того или иного параметра. Разумеется, само разрушение имеет статистическую природу, и при расчетах на прочность это тоже следует принимать во внимание. [c.52]

    Таким образом, горение жидкого топлива, с одной стороны, есть г о рение его наров, т. е. в своей основе это г о м о I е н н ы й х н м и ч е-с К и й н р о ц е с с с другой стороньс, его скорость определяется скоростью гетерогенного физического процесса т (> н-л о о б м е и а с и с и а р е и и е м па поверхности жидкости. [c.144]

    Скорость горения определяют по расходу вещества в единицу времени, который зависит от отношения скоростей химической реакции и процессов передачи тепла и диффузии. Это отношение в разных условиях может быть различным, несмотря на то что горит одно и то же вещество. Например, ес.тн смесь водорода и кислорода нагревать в сосуде (рис. 1,а), тщательно перемешивая содержимое, то при достижении определенной температуры смесь воспламенится сразу во всем объеме и сгорит. Температура и состав смеси будут изменяться во время горения одинаково и одновременно во всем объеме. Вследствие этого ни диффузия газа, ни теплопередача существенного влияния на процесс горения не оказывают . Скорость сгорания смеси, которую называют предварительно подготовленной, прн таких условиях полностью определяется превращением молекул водорода и кислорода в воду. Сжигание водорода в кислороде можно осуществить другим способом (рис. 1,6). Водород подается по трубке 2, а кислород — в кольцевой зазор между трубками 1 и 2. Водород и кислород смешиваются непосредственно в зоне пламени. В этом случае протекают процессы образование горючей смеси газов и отвод продуктов сгорания (диффузия), нагревание холодных газов от пламени (теплопередача) и химическая реакция в пламени. Количество сгорающего газа определяется размерами пламени. Пламя можно уменьшить либо увеличить, для этого достаточно изменить скорость подач И по трубкам либо кислорода, либо водорода, т. е. изменить условия образования смеси — диффузии. Скорость химической реакции в пламени остается практически неиз.менной. Скорость горечия в этом случае определяется диффузией, т. е. чисто физическим процессом. [c.4]

    Горение авиабензина с поверхности. Горение жидкости с поверхности фактически представляет собой горение паров в воздухе. Поток паров бензина поддерживается непрерывно идущйм его испарением. Кислород, необходимый для горения, поступает из окружающей среды. Следовательно, процесс горения бензина или другой жидкости с поверхности является так называемым диффузионным горением, при к-ром размеры фронта пламени и скорости горения определяются не хим. свойствами горючего, а процессами образования топливно-воздушной смеси. [c.162]

    Скорость. сл.ож1нейшего физико-химического процесса — горения — определяется скоростью отдельных (элементарных) химических реакций и процессаМ)И диф.фуэии и теплопередачи из одной зоны реакции в другую. [c.98]

    Процесс окисления ацетилена легко приобретает характер детонации. Прп этом по непрореагировавшему газу движется ударная волна, за фронтом которой реакция горения быстро достигает термодинамического равновесия. Модели профиля детонационной волны, рассмотренные в гл. VI в связи со взрывным разложением чистого ацетилена, применимы и для детонации при окислении ацетилена, как и для других газовых реакций. Скорость распространенпя детонационной волны определяется законами термодпнамнки и газодинамики, а не кинетикой реакции горения. Теория стационарной детонации в газах изложена в ряде монографий (см., например [1],) и выходит за рамки настоящей книги, которая посвяш ена главным образом ацетилену. [c.560]

    Задача о массотеплообмене движущейся твердой частицы, капли или пузыря с окружающей средой лежит в основе расчета многих технологических процессов, связанных с растворением, экстракцией, испарением, горением, химическими превращениями в дисперсной системе, осаждением аэрозолей и коллоидов и т. п. Так, в промышленности процесс экстракции проводится из капель или пузырей, широко применяются гетерогенные химические превращения с использованием частиц катализатора, взвешенных в жидкости или газе. При этом скорость экстракции и интенсивность каталитического процесса в значительной мере определяются величиной полного диффузионного притока реагента к поверхности частиц дисперсной фазы, который в свою очередь зависит от кинетики поверхностной химической реакции, характера обтекания частицы, влияния соседних частиц и других факторов. [c.9]

    В процессе горения, так же, как и в других химических процессах, обязательны два этапа создание молекулярного контакта между реагентами и само взаимодействие молекул с образованием продуктов реакции. Скорость превращения исходных продуктов в конечные зависит от скорости смешивания реагентов путем молекулярной и турбулентной диффузии и от скроости химических реакций. В предельном случае характеристики горения могут определяться только скоростью химического взаимодействия, т. е. кинетическими константами и факторами, влияющими на них (кинетический режим горения), или только скоростью диффузии и факторами, влияющими на нее (диффузионный режим горения). [c.7]

    Рассматривая третий путь — обратный поток энергии вдоль оси пламени в направлении стабилизатора, начинающийся в светящейся зоне и проходящий через вершину пламеии элементарного объема зажигания, — следует предполагать целый ряд возможных путей переноса энергии, например излучением, с помощью электронов, протонов, свободных радикалов, атомов и заряженных радикалов. Электроны и протоны присутствуют в чрезвычайно малых концентрациях, радикалы обладают сравнительно малой подвижностью, а столкновения радикалов, приводящие к обрыву цепи, ограничивают длину цепи, поэтому они не играют существенной роли в изучаемом процессе. Поглощение лучистой энергии маловероятно, но имеются надежные экспериментальные доказательства легкой рекомбинации атомов водорода, которые обладают большой подвижностью и по сравнению с другими радикалами могут мигрировать относительно далеко, пока в результате тройного столкновения не высвободится энергия рекомбинации. В результате рекомбинации атомов водорода Н—Н выделяется 103 ккал/моль. Атомы водорода, выделяя тепло, инициируют также цепные реакции горения в предварительно перемешанной смеси прп непламенных температурах. Диффузия и рекомбинация атомов водорода рассматривались в качестве одного из звеньев механизма, определяющего скорость распространения пламени в свежую смесь. Здесь эта схема также принимается в качестве механизма, посредством которого тепло подводится в элементарный объем зажигания и тем самым оказывает влияние на пределы устойчивости. Эта точка зрения подтверждается результатами работы Лапидуса, Розена и Уилхелма [6], которые экспериментально установили, что скорость зажигания и распространения пламени от одного конца щели горелки до другого существенно изменяется (причем сохраняется воспроизводимость) в зависимости от каталитического характера стенок устья горелки. Предполагая, что различные скорости распространения пламени обусловлены изменением концентрации свободных радикалов во фронте пламени вследствие их рекомбинации на поверхности, авторы предложили теоретическую модель, с помощью которой удалось количественно определить значения коэффициентов рекомбинации на поверхности по отношению к платиновой поверхности. В случае сухих поверхностей относительные коэффициенты имели следующие значения платина Ю" , латунь 10 , окись магния 10 ". Все поверхности, покрытые влагой, дают значения коэффициента рекомбинации меньше 10" . Таким образом, если радикалы могут достигать поверхности стабилизатора, как это указы- [c.239]

    Состав пробы оказывает весьма сложное влияние на испарение пробы, возбуждение спектров атомов и регистрацию излучения линий. Так же сложно влияние и буферного соединения. В одних случаях происходит простое разбавление пробы, в других — протекают сложные химические реакции в канале электрода во время горения дуги с образованием новых соединений с иными физико-химическими свойствами. При наличии в буферном соединении легкоионизирующегося элемента снижается температура плазмы. Буферное соединение определяет в значительной мере скорость диффузии атомов примесей, следовательно, продолжительность их пребывания в столбе дуги и т. д. Трудно подобрать такое соединение, которое бы оказало влияние только на один процесс. Обычно все соединения более или менее многофункциональны . [c.109]

    Скорость испарения капель топлива при прочих равных условиях прямо пропорциональна, а длительность испарения обратно пропорциональна давлению его насыщенных паров. Отсюда период задержки самовоспламенения в области высоких температур будет также обратно пропорционален давлению насыщенного пара [3]. Таким образом, запаздывание самовоспламенения топлива как бы полностью зависит от физических характеристик. Однако имеются и другие взгляды [4]. При сгорании газойля и тяжелого топлива, несмотря на значительное различие их фракционного состава, получаются примерно одинаковые периоды задержки самовоспламенения. У керосина, несмотря на большое содержание легких фракций, наблюдается значительное увеличение периода задержки самовоспламенения, а затем резко выраженное взрывное сгорание. Это позволяет утверждать, что прТ)должительйость периода задержки воспламенения при начальных температурах и давлениях, которые наблюдаются в дизельных двигателях с самовоспламенением от сжатия, определяется не только физическими процессами испарения и смесеобразования, но и химическими процессами, отражающими начальное развитие цепи реакций. Топлива с большим цетановым числом имеют меньший период задержки самовоспламенения. Это подтверждает значительную роль химического состава топлива в организации процесса горения. [c.302]

    Аэродинамическая модель факела неиеремешанных газов отражает лишь некоторые, хотя и весьма существенные, стороны сложного явления. Она, в частности, не позволяет определить ряд важных характеристик процесса, связанных с кинетикой химических реакций (полноту сгорания, условия стабилизации пламени и т. д.) Предельной схеме диффузионного горения при бесконечно большой скорости реакции отвечает в сущности единственный абсолютно устойчивый режим, при котором осуществляется полное реагирование исходных компонентов. Влияние режимных параметров на тепловой режим факела и его устойчивость принципиально не может быть учтено в рамках такой модели. Прямой путь расчета процесса при конечной скорости реакции связан с интегрированием системы дифференциальных уравнений в частных производных, содержащих нелинейные источники тепла и вещества. Он не получил достаточного распространения из-за значительных математических трудностей, с одной стороны, и отсутствия надежных данных о макрокинети-ческих константах, с другой. Это делает, видимо, нецелесообразным проведение в настоящее время массовых численных расчетов газовых пламен на ЭВМ, Отмеченное обстоятельство стимулирует развитие приближенных аналитических методов, сочетающих идеи теории пограничного слоя и теории теплового режима горения [27]. [c.21]

    Твердое топливо, используемое в цементной промышленности, должно иметь теплотворную способность не ниже 2100 кДж/кг, зольность 10—25%, содержание летучих в пределах 10—30%, влажность не более 2%. На различных заводах применяют каменный уголь, полуантрацит, горючие сланцы, бурые угли, коксовую мелочь. При нагревании твердое топливо разлагается с образованием обогащенного углеродом твердого остатка (кокса) и газооб-раз)ных летучих продуктов СОг, HgO, СО, Нг, СН4 и т. д. Выделяющиеся газы образуют оболочку вокруг твердой частицы и сгорают в первую очередь. Следовательно, процесс горения имеет две стадии горение летучих и кокса. Выгорание летучих протекает весьма быстро, а сгорание твердыд частиц кокса происходит на протяжении отрезка времени, длительность которого определяется тонкО стью помола угольной пыли, видом угля, скоростью перемешивания угольного порошках воздухом и другими факторами. Чем более тонко помолот уголь и чем интенсивнее осуществляется смешивание его с воздухом, тем быстрее он сгорает. Общее время сгорания угля во вращающейся печи составляет 0,1—0,3 с. [c.301]

    Исследование процесса горения горючих смесей советскими и зарубежными учеными дало возможность теоретически обосновать многие явления, сопровождающие процесс горения, в том числе и скорость распространения пламени. Изучение скорости распространения пламени в газовых смесях позволяет определять безопасные скорости газо-воздушных потоков в трубопроводах вентиляционных, рекуперационных, аспирацион-ных и других установок, где транспортируются газо-и пыле-воздушные смеси. [c.95]

    Теория де Риса имеет существенный недостаток — она игнорирует влияние кинетики химических реакций, которое может быть весьма существенно вблизи от ведущей кромки пламени. В этой области приближение горения к модели диффузионного пламени может быть ие вполне верным. Ряд исследователей пытались обобщить модель де Риса с учетом газификации полимера в предпламенной зоне и его взаимодействия с окислителем. Примером такого исследования может служить работа Ластрина и др. [46, с. 935]. Авторы постулировали, что Vp определяется процессами, происходящими в зоне воспламенения, смежной с поверхностью. В этой области температура поверхности возрастает от Tq до Tg за счет химической реакции в газовой фазе. Другие предположения тепловой поток, параллельный поверхности топлива, ничтожен по сравнению с потоком, перпендикулярным поверхности скорость химической реакции зависит от локальной концентрации реагентов и температуры, [c.26]


Смотреть страницы где упоминается термин Другие процессы, определяющие скорость горения: [c.85]    [c.142]    [c.161]    [c.161]    [c.432]    [c.513]    [c.100]    [c.13]    [c.270]    [c.111]    [c.125]    [c.235]    [c.235]    [c.7]    [c.107]   
Смотреть главы в:

Теория горения -> Другие процессы, определяющие скорость горения




ПОИСК





Смотрите так же термины и статьи:

Другие процессы

Процесс скорость



© 2025 chem21.info Реклама на сайте