Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы трансформации растительных клеток

    Векторы для трансформации растений на основе Ti-плазмид. Уникальные биологические свойства Ti-плазмиды делают ее идеальным природным вектором для переноса генов Ti-Плазмида имеет широкий круг хозяев, встраивает Т-ДНК в хромосомы растений, где она может реплицироваться, и ее гены транслируются с образованием белка. Существенно также, что границы Т-ДНК обозначены прямыми повторяющимися последовательностями длиной 25 нуклеотидных пар, и любой фрагмент чужеродной ДНК, вставленный между этими повторами, будет перенесен в растительную клетку. Однако манипуляции с Ti-плазмидой затруднены из-за больших размеров, вставить ген в плазмиду традиционными методами не представляется возможным. Поэтому Ti-плазмида была модифицирована генно-инженерными путями, и на ее основе были получены векторы для трансформации растений. [c.54]


    Методы прямого переноса генов в растение. Для прямого переноса генов в растительные клетки очень часто используется трансформация 60 [c.60]

    Микроинъекции ДНК. В ряде экспериментов было показано, что метод микроинъекций может успешно применяться для трансформации растительных клеток аналогично микроинъекциям в животные клетки. Это стало возможным после преодоления ряда технических трудностей, в частности, разработки метода получения протопластов для инъекций путем прикрепления их к стеклам полилизином. [c.61]

    В настоящей главе мы надеемся дать представление о взаимодействии между агробактериями и растительными клетками, которое приводит к успешной трансформации. Предложенные методики различаются главным образом выбором векторной системы, типом эксплантата, методами селекции трансформированных тканей и регенерации трансформированных растений. В этой главе подробно описаны различные подходы к генетической трансформации растений векторами на основе агробактерий при использовании в качестве модельных систем табака, льна и моркови и рассмотрены главные факторы, которые необходимо учитывать при попытках адаптировать любую методи- [c.87]

    Несмотря на то что нуклеиновые кислоты были открыты еще в 1865 г. и долгое время привлекали внимание многих исследователей, их роль в жизни клетки оставалась совершенно неясной. На их фундаментальное значение в процессах жизни указывало, во-первых, их присутствие в составе пе только растительных п животных клеток, но и бактерий и вирусов и, во-вторых, их локализация в клетках, изученная гистохимическими методами. Однако сущность их роли оставалась загадкой до тех пор, пока не обнаружили, что вещество, ответственное за трансформацию пневмококков, является полинуклеотидом [1, 3, 10, 13, 14]. [c.299]

    Был рассмотрен метод трансформации растительньгх клеток при помощи микроорганизмов рода Agroba terium. Существует еще ряд методов, например свободное поглощение чужеродного генетического материала в процессе ко-культивирования с растительными клетками, инъекция ДНК в растительные клетки и целые растения и др. В результате разработанных методов генетическая инженерия получила возможность надежной трансформации ряда растений, в том числе и сельскохозяйственных культур. Так, имеются хорошие [c.505]

    Бинарный вектор. Другой, более простой и поэтому более часто применяемый метод введения чужеродной ДНК заключается в использовании бинарных векторов. Как уже упоминалось, для заражения и трансформации растительных клеток агробактериям необходима vir-o6-ласть, ответственная за перенос ДНК, и прямые повторы, ограничивающие район Т-ДНК. Более того, угУ-область и пограничные повторы Т-ДНК не обязательно должны находиться в одной плазмиде. Система бинарных векторов основана на том, что в агробактериальной клетке, используемой для трасформации растений, одновременно находятся две плазмиды. Одна содержит область пограничных повторов Т-ДНК, а другая — v/r-область. Обе плазмиды могут независимо реплицироваться в клетках агробактерии, однако, поодиночке не могут приводить к трансформации растений. При этом плазмида, несущая Т-ДНК, содержит в своем составе фрагменты плазмиды Е. соИ (в том числе и точку начала репликации), что позволяет проводить все манипуляции по клонированию в клетках Е. соИ и намного упрощает весь процесс. Аналогично коинтегра-тивному вектору нужный ген (целевой) и ген селективного маркера встраиваются в область Т-ДНК, и затем такая рекомбинантная плазмида вводится в клетки агробактерии, которые уже несут другую плазмиду с угг-областью. В отличие от коинтегративных векторов не происходит гомологичной рекомбинации между двумя плазмидами и их объединения в единую векторную молекулу. Белки, экспрессируемые уг>-генами одной плазмиды, вырезают и встраивают в растительный геном области Т-ДНК с чужеродными генами другой плазмиды. В настоящее время такие бинарные векторы наиболее часто используются для трансформации растительных клеток. [c.56]


    Из генома В. thuringiensis бьш выделен ген токсина Ы2 и поставлен под контроль промотора 35S aMV. 6 -Ген был интегрирован в геном растений табака методом агробактериальной трансформации. Экспрессия бактериального Ы2-тт в растительных клетках была подтверждена как на уровне транскрипции, по присутствию соответствующей мРНК, так и на уровне трансляции, по синтезу белка-токсина. Полученные трансгенные растения табака бьши устойчивы к вредителям. Эффективность защиты сельскохозяйственных культур от вредителей была показана и на трансгенных растениях томата, трансформированных генами эндотоксина, при этом бактериальный белок, синтезированный в тканях растений, обеспечивал защитный эффект, сравнимый с использованием инсектицидных препаратов. [c.71]

    Следует учитывать две основные особенности маркерных генов. Во-первых, их структуру (нуклеотидную последовательность), которая определяет такие факторы, как регуляция транскрипции (конститутивная экспрессия или включение под действием определенных внешних условий или стадии развития), скорость транскрипции, стабильность транскрипта и эффективность трансляции. Во-вторых, активность продукта данного гена, который, очевидно, отвечает за доминантную экспрессию подходящего селективного фенотипа. В большинстве обычных векторов трансформации в качестве селективных маркеров используют прокариотические ферменты устойчивости к антибиотикам, которые были адаптированы с помощью генно-инженерных методов для конститутивного синтеза в растительных клетках (табл. 2.1). В некоторых экспериментах в качестве доминантных маркеров успешно использовались ферменты, обеспечивающие защиту от гербицидов. Обычно добиваются слияния кодирующей последовательности фермента с промоторами, выделенными из Т-ДНК или генома вируса мозаики цветной капусты (ВМЦК), на 5 -конце, а на З -конце —с сигналом полиаденилирования (тоже полученным, как правило, из какого-либо гена Т-ДНК). В качестве маркерных генов наиболее широко используют гены устойчивости к таким антибиотикам, как канамицин, G418 [8, 27], гигромицин [54] и блеомицин [28] Недавно для трансформации растительных клеток в качестве доминантных маркеров были попользованы гены, обеспечивающие устойчивость к гербицидам, таким, как глифосат [45]. Поскольку селективные маркерные гены нормально функционируют в трансформированных [c.33]

Рис. 11. Типичная трансгенная конструкция, используемая в генетической инженерии растений. LB — левый край, RB — правый край фрагменты ДНК, содержащие по 25 пар нуклеотидов от Ti-плазмиды Agroba terium tume fa iens, необходимые для переноса трансгенных конструкций в растительные клетки с помощью метода агробактериальной трансформации. Во многих генетических конструкциях селективный ген и его регуляторные элементы отсутствуют Рис. 11. Типичная трансгенная конструкция, используемая в <a href="/info/1856509">генетической инженерии растений</a>. LB — левый край, RB — правый край фрагменты ДНК, содержащие по 25 пар нуклеотидов от Ti-плазмиды Agroba terium tume fa iens, необходимые для переноса трансгенных конструкций в <a href="/info/105476">растительные клетки</a> с <a href="/info/392475">помощью метода</a> агробактериальной трансформации. Во многих <a href="/info/1396268">генетических конструкциях</a> селективный ген и его <a href="/info/33271">регуляторные элементы</a> отсутствуют
    В отсутствие специфического вектора прямая трансформация по крайней мере некоторых растительных клеток осуществляется с помощью трансфекции фрагментами чужеродной ДНК, добавленными в культуральную среду. Как и клетки животных, клетки растений поглощают ДНК и она ин-тефирует с клеточным геномом, в результате чего образуются стабильно трансформированные клетки. Однако эффективность прямой трансформации весьма низка. Отобрать трансформанты, появляющиеся с частотой примерно 1 на 10 обработанных клеток, можно лищь с помощью высокочувствительных методов. Для повыщения эффективности прямого введения ДНК в клетки растений можно использовать метод электропорации. В этом случае трансформированными становятся до 1% клеток, а кроме того, такой способ можно применять в случае как однодольных, так и двудольных растений. С помощью рекомбинантных ДНК были трансформированы различные растительные клетки, в том числе клетки табака, петуньи, томатов и подсолнечника. Для трансформации часто используют протопласты, полученные путем разрущения жестких клеточных стенок с помощью целлюлазы, в результате чего клетки становятся проницаемыми для ДНК. При переносе трансфицированных протопластов в соответствующую среду клеточная стенка восстанавливается. [c.273]

    Структура таких векторов стандартна. Они содержат все необходимые элементы для манипулирования ими в клетках Е. oli, маркер для селекции растительных трансформантов и полилинкер (рис. 12.5,а). Особенно важно отметить, что эти векторы можно использовать для трансформации протопластов как однодольных, так и двудольных растений. Их небольшой размер (несколько т.п.н ) позволяет достигать достаточно высокого уровня трансформации (10 —10 ) при введении рекДНК в протопласты с помощью полиэтиленгликоля, липосом и методом электропорации. Апробирован также метод прямой микроинъекции рекДНК в ядра протопластов. Частоты трансформации при этом [c.382]



Смотреть страницы где упоминается термин Методы трансформации растительных клеток: [c.176]    [c.197]    [c.372]   
Смотреть главы в:

Сельскохозяйственная биотехнология Изд2 -> Методы трансформации растительных клеток




ПОИСК





Смотрите так же термины и статьи:

Методы трансформации



© 2024 chem21.info Реклама на сайте