Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки получение с помощью рекомбинантных ДНК

    Репутация периодической ферментации как весьма надежной системы сдерживает переход к любому другому типу ферментации, даже при том что непрерывный режим работы более эффективен. И все-таки недавно было создано сразу несколько установок, лабораторных (до 10 л) и пилотных (до 1000 л), для непрерывной и периодической ферментации с добавлением субстрата - с целью получения белков с помощью рекомбинантных микроорганизмов. Это говорит о том, что более широкое применение непрерывных ферментеров и периодических ферментеров с добавлением субстрата в промышленности -это только вопрос времени. [c.354]


    Вообще говоря, при получении чужеродных белков с помощью рекомбинантных Е. соИ руководствуются тем, что при максимальной конечной плотности культуры получается и максимальное количество продукта. В ферментерах периодического действия с добавлением субстрата концентрация рекомбинантных клеток Е. соИ достигает 50 грамм сухого вещества на 1 л среды (а в некоторых случаях >100 г/л). (Вес сухого вешества клеток Е. соН составляет примерно 20-25% веса влажного вещества.) [c.356]

    Разнообразные гены были химически синтезированы, введены в клоны и использованы для направленного синтеза белков с помощью рекомбинантной ДНК. Например, инсулин — это белок, применяемый при лечении диабета. Ген, синтезирующий инсулин человека, получен химиками в 1978 г. Он был введен в плазмиду и внедрен в обычную бактерию Е. соИ. Еще один пример — гормон роста человека (соматотропин). Это белок, представляющий собой полипептид из 191 аминокислоты. Ген, кодирующий этот белок, был получен сращиванием одной из природных ДНК с химически синтезированной. В 1979 г. белок начал производиться в клетках Е. соИ. Он испытывается как возможное средство лечения карликовости и сходных заболеваний, вызываемых недостатком гормона роста. [c.119]

    Получение рекомбинантных белков с помощью эукариотических систем [c.135]

    Клонированные целлюлазные гены можно использовать в разных целях для облегчения очистки рекомбинантных белков с помощью связывающего целлюлозу домена для получения коммерческих продуктов (например, этанола) из целлюлозных отходов с помощью микроорганизмов, в которые встроены целлюлазные гены. [c.300]

    Крупные открытия в науке обычно делаются при разработке фундаментальных проблем. Мы разделяем мнение большинства врачей о том, что последние достижения биотехнологии, нашедшие применение в самых важных отраслях медицины, оказывают и будут оказывать революционизирующее воздействие на диагностику, лечение и понимание основ патологии многих тяжелых заболеваний. Ориентируясь на читателей, не имеющих медицинской подготовки, мы расскажем о том, какую важную роль играют в клинической практике некоторые новые подходы, а также широко используемые методы диагностики. Мы по необходимости ограничимся лишь немногими примерами, но читатель может без труда дополнить их множеством других использованием в терапии белков, которые можно синтезировать при помощи видоизмененных методами генетической инженерии микроорганизмов, применением моноклональных антител, ферментов и т. д. Мы не обсуждаем использующиеся при этом технологические процессы сколько-нибудь подробно (о них речь идет в других главах) исключение составляет лишь раздел о синтезе инсулина человека дело в том, что инсулин был первым белком, полученным с помощью технологии рекомбинантных ДНК и испытанным на людях, а также первым или одним из первых) препаратом такого рода, нашедшим применение в клинике. [c.325]


    В приведенных примерах мишенями антител, полученных методами белковой инженерии, были белки, экспонированные на поверхности клеток. Однако не меньшего биологического эффекта удается достичь с помощью рекомбинантных антител, действие которых направлено против внутриклеточных лигандов. [c.418]

    Выделение ДНК, синтез двухцепочечных ДНК, конструирование векторов, получение продуктов с помощью полимеразной цепной реакции (ПЦР), способы очистки рекомбинантных белков [c.535]

    Лекарственные белки, получаемые в генно-инженерных клетках млекопитающих, могут быть правильно модифицированы, с активностью, сравнимой с природными белками, но выход белка из культуральных клеток очень низкий. К тому же создание клеточных линий является сложной и дорогой процедурой. Поэтому стоимость полученных рекомбинантных белков, продуцируемых с помощью клеточных систем, в 1000 раз превышает стоимость при их производстве с использованием трансгенных животных. [c.241]

    Для получения больших количеств чужеродных белков с помощью рекомбинантных штаммов Е. соИ бьша сконструирована плазмида pPL 2833. Она содержит сильный промотор, селективный маркерный ген и короткий участок с несколькими уникальными сайтами для рестрицирующих ферментов (полилинкер), следующий непосредственно за промотором. Эффективность этого экспрессирующего вектора в осуществлении синтеза чужеродных белков в Е. соН можно еще [c.108]

    Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и химикаты. В отличие от рекомбинантных бактерий, которых культивируют в больших биореакторах (при этом необходимы высококвалифицированный персонал и дорогостоящее оборудование), для выращивания сельскохозяйственных культур не нужно больших средств и квалифицированных рабочих. Основная проблема, которая может возникнуть при использовании растений в качестве биореакторов, будет связана с выделением продукта введенного гена из массы растительной ткани и сравнительной стоимостью производства нужного белка с помощью трансгенных растений и микроорганизмов. Уже созданы экспериментальные установки по получению с помощью растений моноклональных антител, функциональных фрагментов антител и полимера поли-Р-гидроксибутира-та, из которого можно изготавливать материал, подверженный биодеградации. [c.412]

    Чтобы создавать рекомбинантные ДНК, несущие желаемый ген, необходимо прежде всего располагать этим геном. Для этого используют три основных способа. Во-первых, если известна первичная структура белка, получение которого желательно осуществить методами генетической инженерии, можно, основываясь на генетическом коде, построить нуклеотидную последовательность, программирующую этот белок, и осуществить химико-ферментативный синтез гена. Так, например, были осуществлены синтезы нескольких генов, кодирующих различные интерфероны. Во-вторых, можно выделить из тканей, в которых происходит экспрессия гена, информационные РНК, среди которых должна присутствовать и мРНК, кодирующая необходимый белок, провести с помощью обратной транскриптазы синтез комплементарной ДНК (сокращенно кДНК) и перевести ее в двунитевую структуру с помощью Д П<-полимеразы. Можно, наконец, вырезать желаемый ген непосредственно из ДНК того объекта, бело которого собираются продуцировать. Два последних подхода не дают сразу же индивидуального гена и требуют предварительного отбора из сложной смеси кДИК или фрагментов хромосомной ДНК. Эта проблема решается уяЛ на уровне илстои микроорганизмов, в которые введены новые наследственные программы, и пути ее решения будут изложены несколько ниже. [c.301]

    Огромный интерес к получению лекарственных белков с использованием трансгенных животных вызван также тем, что традиционная технология их получения из крови доноров сопровождается переносом человеческих инфекций (гепатит, СПИД и др.). Это исключается при получении рекомбинантных белков с помощью траисгенных животных. [c.241]

    Одно из практических применений технологии рекомбинантных ДНК—получение медикобиологической продукции. Генная инженерия дает возможность получать в больших количествах белки, которые не могут быть выделены применением обычных методов очистки (интерферон, плазмино-ген-активирующий фактор) кроме того, с помощью рекомбинантных ДНК можно нарабатывать специфические белки человека для замены используемых в клинической практике аналогичных белков животных (инсулин, гормон роста). Достоинства обеих технологий очевидны. [c.46]

    Быстрое развитие иммунологии нашло свое отражение в данной, третьей книге из серии Иммунологические методы , которая включает изложение экспериментального опыта, накопленного в Базельском институте иммунологии. В нее входят пять глав, посвященных применению рекомбинантных ДНК в иммунологии в двух главах описано использование высокоэффективной жидкостной хроматографии для разделения белков отдельные главы касаются следующих вопросов применение моноклональных антител для идентификации мембранных антигенов лимфоцитов, типирование антигенов гистосовместимости, новые методы анализа белков с помощью двумерного электрофореза, лимфокины, поддерживающие рост В-клеток. В четырех главах описано получение и ведение линий клонированных В- и Т-кле-ток и гибридом, а еще в четырех обсуждаются новые методы детектирования клеток, продуцирующих ревматоидный фактор. Две главы посвящены таким общим иммунологическим методам, как флуоресцентный сортинг клеток и анализ методом лимитирующих разведений, и наконец, четыре последние главы касаются сложных методов, используемых при работе с определенными видами животных (птицами, овцами и амфибиями) для изучения специальных иммунологических вопросов. [c.7]


    При реализации такого подхода из гена, клонированного в составе векторной плазмиды, по двум близко расположенным уникальным сайтам рестрикции вырезается фрагмент ДНК, в который требуется внести мутации, и на его место встраивается синтетический двухцепочечный олигонуклеотид, содержащий необходимые замены нуклеотидов (кассету мутаций). В этом случае, если в окрестностях мутагенизируемого локуса гена отсутствуют подходящие природные сайты рестрикции, их вводят с помощью направленного мутагенеза. Разработка автоматических синтезаторов ДНК сделала синтез олигодезоксирибонук-леотидов простой и даже рутинной процедурой. Более того, использование на некоторых этапах синтеза вместо одного нуклеотида смеси из двух, трех или даже всех четырех дезоксирибо-нуклеозидтрифосфатов позволяет получать за один прием сложную смесь олигонуклеотидов, которые могут содержать в определенных сайтах наборы кодонов для многих или даже всех 20 природных аминокислот. Это дает возможность осуществлять одновременный скрининг по искомому мутантному фенотипу большого числа разных мутантных клонов, полученных в одном цикле клонирования. С помощью кассетного мутагенеза можно определять функциональную роль отдельных сайтов и целых доменов в полипептидных цепях конкретных белков и создавать рекомбинантные белки с новыми, подчас неожиданными свойствами. [c.323]

    В изучении биогенеза митохондрий оказалось чрезвычайно полезным использование в качестве обьекта дрожжей. В ик клетки можно эффективно вводить гибридные гены, кодирующие смешанные белки (полученные с помощью методов рекомбинантных ДНК) О меканизмак переноса веществ в митохондрии известно гораздо больше, чем о механизмах переноса в хлоропласты. Скорее всего, эти механизмы идентичны, котя клор опласты и содержат еще о дин, самый внутренний мембранный компартмент - тилакоид. [c.29]

    В конце 70-х годов XX в. на основе технологии рекомбинантной ДНК получили гормон роста микробного происхождения. Было показано, то ГР оказывает такое же стимулирующее действие на лактацию и рост животного, как и гипофизарный ГР. Гормон роста, полученный с помощью методов генетическсШ инженерии, при крупномасштабном применении вызывал уветачение удоев на 23 — 31 % при дозе 13 мг в день. Разработаны формы препарата пролонгированного действия, позволяющие использовать его один раз в две недели и даже в месяц. При ежедневной инъекции ГР молодняку крупного рогатого скота, свиней и овец удалось увеличить суточные привесы на 20 — 30% при значительном сокращении расхода кормов на единицу прироста. У молодняка свиней с ускорением роста увеличивалось содержание белка и уменьшалось содержание жира в тканях, что повышало качество мясопродуктов. [c.129]

    Технология рекомбинантных ДНК позволяет выделять гены любых белков, существующих в природе, экспрессировать их в специфическом хозяйском организме и получать чистые белковые продукты. Однако физические и химические свойства таких природных белков часто не удовлетворяют условиям, обеспечивающим возможность их промышленного применения. Иногда для получения белков, обладающих нужными свойствами, в качестве источника соответствующих генов используют организмы, растущие в необычных, зачастую экстремальных условиях. Например, для синтеза а-амилазы, не утрачивающей своей активности при высокой температуре, выделили ее ген из Ba illus stearothermophilus — бактерии, естественной средой обитания которой являются горячие источники с температурой воды 90 °С. Полученная таким образом а-амилаза оставалась активной при температурах, при которых осуществляют промышленное производство этилового спирта из крахмала. Для получения белков с заранее заданными свойствами можно использовать также мутантные формы генов. Однако число мутантных белков, образующихся в результате замены отдельных нуклеотидов в структурном гене с помощью обычного мутагенеза, чрезвычайно велико. Мутагенез с последующим отбором редко приводит к существенному улучшению свойств исходного белка, поскольку большинство аминокислотных замен сопровождается снижением активности фермента. [c.158]

    С помощью клонирования специфических генов и последующей их экспрессии в бактериях получен целый ряд белков, которые можно будет использовать в качестве лекарственных препаратов. Большинство этих белков имеют эукариотическое происхождение, так что для выделения нужного гена сначала получают препарат мРНК, обогащенный интересующими исследователя фракциями, затем создают кДНК-библиотеку и встраивают соответствующую ДНК в подходящий вектор для экспрессии. Произведя обмен участков родственных генов, кодирующих аналогичные белковые домены, или прямо заменяя сегменты клонированного гена, кодирующие функциональные части белка, можно создавать новые модификации таких белков. В качестве лекарственных средств можно использовать и некоторые ферменты. Например, для снижения вязкости слизи, которая накапливается в легких больных муковисцидозом, применяют в виде аэрозоля рекомбинантную ДНКазу I и альгинатлиазу. [c.224]

    Важнейшим результатом эффективного использования биотехнологии в животноводстве является разработка и получение принципиально новых биостимуляторов рекомбинантного бычьего гормона роста — со-матотропина и других веществ для повышения продуктивности животных, а также для иммунокоррекции соматостатина с помощью спектра препаратов химерных белков, показывающих высокую эффективность на крупном рогатом скоте, свиньях и пушных зверях. [c.427]


Смотреть страницы где упоминается термин Белки получение с помощью рекомбинантных ДНК: [c.353]    [c.518]    [c.26]    [c.48]    [c.214]    [c.124]    [c.133]    [c.215]    [c.105]    [c.148]    [c.221]    [c.231]    [c.503]    [c.987]    [c.15]    [c.15]   
Биохимия человека Т.2 (1993) -- [ c.46 , c.47 ]

Биохимия человека Том 2 (1993) -- [ c.46 , c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте