Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопии фотометрии пламени

    Как и любой другой прибор эмиссионной спектроскопии, фотометр для фотометрии пламени имеет источник возбуждения (пламенная горелка), диспергирующий элемент (обычно светофильтр) и приемник света — рецептор (обычно фотоэлемент). В спектрофотометрах для пламени вместо светофильтров применяют призмы и дифракционные решетки. Анализируемый раствор в пламя горелки вводится в виде аэрозоля. При этом растворитель испаряется, а соли металлов диссоциируют на атомы, которые при определенной температуре возбуждаются. Возбужденные атомы, переходя в нормальное состояние, излучают свет характерной частоты, который выделяется с помощью светофильтров, и его интенсивность измеряется фотоэлементом. [c.42]


    Наиболее простым и давно применяемым источником возбуждения эмиссии является пламя, его использовали еще в ручном спектроскопе при проведении качественного анализа. В настоящее время пламя применяют для точных количественных определений содержания щелочных и щелочноземельных металлов в растворе в методе фотометрии пламени. Поскольку температура в зонах пламени неодинакова, возбуждающая способность этих зон также различна. Количественная оценка интенсивности излучения возможна только при работе с очень равномерным пламенем, при исключительно равномерном распределении анализируемого раствора в пламени и использовании для возбуждения одной и той же зоны пламени. [c.370]

    Пламя в атомной абсорбционной спектроскопии является наиболее распространенным способом атомизации вещества. В атомно-абсорбционной спектроскопии пламя выполняет ту же роль, что и в пламенной эмиссионной спектроскопии, с той лишь разницей, что в последнем случае пламя является также и средством для возбуждения атомов. Поэтому естественно, что техника пламенной атомизации проб в атомно-абсорбционном спектральном анализе во многом копирует технику эмиссионной фотометрии пламени. [c.192]

    Процессы, протекающие в пламени. В фотометрии пламени и в атомно-абсорбционной спектроскопии пламя можно условно считать средой, в которой протекают сложные физические процессы. Эти процессы происходят при введении в пламя раствора в виде аэрозоля, содержащего соли металлов. [c.83]

    Фотометрия пламени, пламенная фотометрия, спектрофото-метрия пламени, пламенно-эмиссионная спектроскопия, спектрометрия пламени — вариант спектрального атомно-эмиссионного анализа, основанный на непосредственном измерении интенсивности спектрального излучения жидкого или твердого анализируемого образца, вводимого в распыленном виде в бесцветное газовое пламя как источник возбуждения. Пламя обладает меньшей энергией возбуждения, чем дуга или искра, поэтому оно возбуждает интенсивную эмиссию только у элементов с низким потенциалом возбуждения (щелочные, щелочноземельные элементы, таллий). Если раствор вводят в пламя с постоянной скоростью, то интенсивность излучения зависит от концентрации определяемого элемента (градуировочный график). Фотометр регистрирует излучение только одной длины волны, он применяется для определения одного элемента. Для одновременного определения нескольких элементов служит спектрофотометрия пламени [13, 57]. [c.14]


    В качестве поглощающей плазмы в атомно-абсорбционной спектроскопии обычно используют пламена тех же горючих смесей, что и в методе пламенной фотометрии. Анализируемый раствор вводится в них распылением. Однако этот путь приводит к появлению примерно тех же видов помех и экспериментальных ошибок, которые были описаны выше в разделе Фотометрия пламени . Наиболее существенными из [c.253]

    Фотометрию пламени в узком смысле можно рассматривать как метод эмиссионной спектроскопии. Окрашивание пламени, возникающее, например, при внесении летучих солей щелочных и щелочноземельных металлов в пламя, издавна используют для целей качественного анализа. Но визуальным методом можно определить окрашивание пламени только в видимой части сп( ктра и невозможно разложить смешанную окраску на составные цвета, а интенсивность окраски можно оценить лишь очень приешизительно. В фотометрии пламени измеряют интенсивность излучения и при определенных условиях используют зависимость ее от концентрации веществ, вызывающих окрашивание пламени. [c.373]

    Во второй половине XIX века работы Грукса, Райха и Рихтера, Янсена, Чемпиона, Пелле и Гренье подтвердили растущий интерес к спектроскопии пламени. В 1877 г. Ги сконструировал пневматический распылитель для контроля за количеством пробы, вводимой в пламя, и показал, что интенсивность излучения пропорциональна количеству пробы. Началом спектроскопии в ее современном виде можно считать работу Ландергарда 1928 г. Он использовал пламя ацетилен-воздух и пневматический распылитель и смог построить градуировочные графики для количественного анализа. Первый коммерчески доступный пламенный эмиссионный спектрометр был выпущен Сименсом и Цейсом в середине 1930-х. В 1955 г. вышла в свет первая монография на эту тему — Фотометрия пламени , написанная Рамиресом Муньосом. Пламенная фотометрия все еще изменяется, хотя с начала 1960-х широко используют новые источники излучения, такие, как плазма. [c.10]

    В прошлом газовое пламя как источник возбуждения атомов широко использовалось в методе, н азь1ваемом фотометрией пламени. Сейчас оно в основном применяется для определения щелочноземельных металлов. Испускание можно измерять на многих атомно-абсорбционных спектрофотометрах, используя то же самое пламя и распылительную систему. В этом случае пламя должно иметь более высокую температуру, чем в ААС, где атомы поглощают, резонансное издунение следовательно, долж йБпгажщиГься в основном состоянии, тогда как в эмиссионной спектроскопии их нужно перевести в возбужденное состояние. [c.200]

    А. Соединения и минералы лития окрашивают пламя в красивый карминовый цвет. Реакция более чувствительна, если минерал смочить концентрированной соляной кислотой некоторые минералы необходимо предварительно сплавить с бисульфатом и бифторидом калия в петле платиновой проволоки. Окраску маскирует желтое пламя натрия, но она может быть различена через синий светофильтр или при помощи спектроскопа. Спектр лития имеет ярко-красную линию 6708 А между красной линией калия и линией натрия. Если эта линия интенсивна и постоянна, минерал, по-видимому, содержит значительное количество лития. Предел видимости меняется с условиями и у различных наблюдателей, но все же можно обнаружить 10 мг лития. Небольшая спираль из платиновой проволоки, погруженная в раствор, содержащий ир11мерно 2-10 5 мг в 1 мл, а затем по.мещенная в пламя бунзеновской горелки, дает мгновенное появление красной линии лития. Метод для определения таких малых количеств лития тот же, что и для определения в минеральных водах [3] он состоит в измерении степени разведения неизвестного раствора, при которой линия лития едва обнаруживается, и сравнении с разведением подобного раствора с известным содержанием лития. Однако весовой метод так прост, что для средних и относительно больших количеств лития он более нредпочтителеп по сравнению со спектроскопическим. Современная аппаратура для пламенной фотометрии позволяет достаточно просто и быстро определять литий по его красной линии 670,8 ммк при его содержании от сотых долей процента (см. разд. IV, Г). Доп. ред.)  [c.49]


Смотреть страницы где упоминается термин спектроскопии фотометрии пламени: [c.208]    [c.8]   
Аналитическая химия серы (1975) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрия

Фотометрия пламени

Фотометры



© 2025 chem21.info Реклама на сайте