Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспрессирующие векторы

Рис. 7.10. Некоторые рекомбинантные белки, синтезированные в системе экспрессирующих векторов на основе бакуловирусов. HIV-1 - вирус иммунодефицита человека 1 типа HSV - вирус простого герпеса. Рис. 7.10. <a href="/info/1876683">Некоторые рекомбинантные</a> белки, синтезированные в <a href="/info/1549457">системе экспрессирующих векторов</a> на <a href="/info/1422013">основе бакуловирусов</a>. HIV-1 - вирус иммунодефицита человека 1 типа HSV - <a href="/info/566376">вирус простого</a> герпеса.

    Трансляционные экспрессирующие векторы [c.118]

    Эукариотические экспрессирующие векторы имеют такую же структуру, что и их прокариотические аналоги (рис. 7.1), и должны содержать  [c.135]

Таблица 6.1. Зависимость числа копий трех плазмидных экспрессирующих векторов от температуры Таблица 6.1. <a href="/info/39461">Зависимость числа</a> копий трех плазмидных <a href="/info/200120">экспрессирующих векторов</a> от температуры
    Для получения больших количеств чужеродных белков с помощью рекомбинантных штаммов Е. соИ бьша сконструирована плазмида pPL 2833. Она содержит сильный промотор, селективный маркерный ген и короткий участок с несколькими уникальными сайтами для рестрицирующих ферментов (полилинкер), следующий непосредственно за промотором. Эффективность этого экспрессирующего вектора в осуществлении синтеза чужеродных белков в Е. соН можно еще [c.108]

    Система экспрессирующих векторов на основе бакуловирусов [c.144]

Рис. 7.1. Обобщенная структура эукариотического экспрессирующего вектора. Его основные элементы эукариотический транскриптон с промотором (/>), сайтом клонирования (С К) и сигналами терминации и полиаденилирования t) эукариотический селективный маркер (СМ) сайт инициации репликации, функционирующий в клетках эукариот сайт Рис. 7.1. <a href="/info/63676">Обобщенная структура</a> <a href="/info/200767">эукариотического экспрессирующего вектора</a>. Его <a href="/info/64408">основные элементы</a> эукариотический <a href="/info/170937">транскриптон</a> с промотором (/>), <a href="/info/1385425">сайтом клонирования</a> (С К) и сигналами терминации и полиаденилирования t) <a href="/info/200768">эукариотический селективный</a> маркер (СМ) <a href="/info/1868768">сайт инициации</a> репликации, функционирующий в <a href="/info/1531939">клетках эукариот</a> сайт
    Экспрессирующие векторы для работы с клетками млекопитающих [c.149]

    Внехромосомные экспрессирующие векторы млекопитающих используются для изучения функций и регуляции генов млекопитающих. Кроме того, с их помощью могут быть получены аутентичные рекомбинантные белки, которые потенциально могут использоваться в медицинских целях для лечения некоторых заболеваний человека. Уже сконструированные экспрессирующие векторы млекопитающих весьма многочисленны, но все они обладают сходными свойствами и похожи на другие эукариотические экспрессирующие векторы. [c.149]


    В экспрессирующие векторы млекопитающих уже встроены гены самых разных белков и осуществлена их экспрессия в хозяйских клетках. Иногда выход продукта увеличивался, если между промотором и клонированным геном встраивали интрон. Механизм этого феномена неизвестен. Возможно, первичный транскрипт клонированного гена содержит скрытые сайты сплайсинга, по которым вырезается часть кодирующей области клонированного гена, а при наличии дополнительного интрона сплайсинг по ним происходит с меньщей вероятностью. [c.150]

    Суммируя, можно сказать, что экспрессирующие векторы млекопитающих столь же универсальны и эффективны, как и векторы для других эукариотических систем экспрессии, если речь идет о получении аутентичных рекомбинантных белков для исследовательских и медицинских целей. Однако промышленный синтез рекомбинантных белков с использованием модифицированных клеток млекопитающих обходится слишком дорого. В этом случае предпочтительны менее дорогие системы экспрессии, за исключением тех ситуаций, когда [c.153]

    Прокариотические системы экспрессии успещно используются для синтеза многих белков. Однако некоторые белки для превращения в активную форму должны претерпеть специфические пост-трансляционные модификации - гликозилирование, фосфорилирование или ацетилирование, а бактерии к этому не способны. Поэтому бьшо решено попытаться экспрессировать клонированные гены в эукариотических клетках с помощью специально созданных эукариотических экспрессирующих векторов. [c.154]

    Опишите как минимум две селективные системы, использующиеся в случае экспрессирующих векторов млекопитающих. [c.157]

    На самом деле в плазмидных экспрессирующих векторах используется один из вариантов /ас-промотора - la UVS с измененной -10-последовательностью, более сильный, чем /йс-про-мотор дикого типа. Транскрипция с промотора ta также подавляется /ас-репрессором и возобновляется при добавлении в среду лактозы или ИПТГ. [c.108]

Рис. 7.17. Двухцистронный экспрессирующий вектор. Клонированные гены (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, играет роль внутреннего сайта связывания рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Трансляция мРНК начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с образованием функционального димерного белка. Вектор содержит сайты инициации репликации, функционирующие в Е. соИ orf) и в клетках млекопитающих (orF y, селективный маркерный ген (Amp ) для отбора трансформированных клеток Е. соИ селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.17. Двухцистронный <a href="/info/200120">экспрессирующий вектор</a>. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, <a href="/info/1907646">играет роль</a> внутреннего <a href="/info/200464">сайта связывания</a> рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). <a href="/info/1350395">Трансляция мРНК</a> начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с <a href="/info/660502">образованием функционального</a> димерного белка. Вектор содержит <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. соИ orf) и в <a href="/info/200744">клетках млекопитающих</a> (orF y, <a href="/info/200493">селективный маркерный</a> ген (Amp ) для отбора трансформированных клеток Е. соИ <a href="/info/200493">селективный маркерный</a> ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра).
Рис. 7.13. Обобщенная схема экспрессирующего вектора млекопитающих. Полилинкер (ПЛ) и селективный маркер (СМ) находятся под контролем эукариотического промотора р) и сигнала полиаденилирования (j>a). Репликация вектора в Е. oli и в клетках млекопитающих обеспечивается сайтами инициации репликации ori и соответственно. Для отбора трансформированных клеток Е. oli используется ген устойчивости к ампициллину (АтрО Рис. 7.13. <a href="/info/1352758">Обобщенная схема</a> <a href="/info/200744">экспрессирующего вектора млекопитающих</a>. <a href="/info/1386520">Полилинкер</a> (ПЛ) и <a href="/info/1409321">селективный маркер</a> (СМ) находятся под контролем эукариотического промотора р) и сигнала полиаденилирования (j>a). <a href="/info/1404089">Репликация вектора</a> в Е. oli и в <a href="/info/200744">клетках млекопитающих</a> обеспечивается <a href="/info/1868768">сайтами инициации</a> репликации ori и соответственно. Для отбора трансформированных клеток Е. oli используется ген устойчивости к ампициллину (АтрО
    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

    Свойства любого белка зависят от его конформации, которая в свою очередь определяется аминокислотной последовательностью. Некоторые аминокислоты в полипептидной цепи играют ключевую роль в определении специфичности, термостабильности и других свойств белка, так что замена единственного нуклеотида в гене, кодирующем белок, может привести к включению в него аминокислоты, приводящему к понижению его активности, либо, напротив, к улучшению каких-то его специфических свойств. С развитием технологии рекомбинантных ДНК появилась возможность производить специфические замены в клонированных генах и получать белки, содержащие нужные аминокислоты в заданных сайтах. Такой подход получил название направленного мутагенеза. Как правило, интересующий исследователя ген клонируют в ДНК фага M13. Одноцепочечную форму ДНК этого фага копируют с использованием олигонуклеотидного праймера, синтезированного таким образом, чтобы в ген-мишень был встроен определенный нуклеотид. Затем трансформируют двухцепочечными ДНК M13 клетки Е. соИ. Часть образующихся в клетках фаговьгх частиц несет ген, содержащий нужную мутацию. Такие частицы идентифицируют, встраивают мутантный ген в экспрессирующий вектор, синтезируют белок и определяют его активность. Вносить изменения в клонированные гены можно также с помощью плазмид или ПЦР. Обычно заранее не известно, какую [c.175]


    Используя эписомный экспрессирующий вектор с сигнальной последовательностью а-фак-тора, удалось получить правильным образом модифицированный, биологически активный белок гирудин он синтезировался и секретировался щтаммом S. erevisiae. Ген гирудина был выделен из клеток беспозвоночного — пиявки Hirudo medi inalis. Этот белок является мощным антикоагулянтом и не вызывает нежелательных иммунологических реакций у человека. Его можно получать в активной форме в больших количествах, что упростило исследование его способности разрушать сгустки венозной крови и устранять другие проявления тромбоза. К сожалению, клинические исследования 12 142 больных, у 4131 из которых имелись сердечнососудистые заболевания, выявили лишь незначительные преимущества рекомбинантного гирудина перед гепарином. Эти преимущества не могут компенсировать высокую стоимость рекомбинантного гирудина, так что его широкое использование в клинике представляется маловероятным. [c.140]

    На первый взгляд разработка любой эукариотической системы экспрессии представляется относительно простой процедурой, состоящей в подборе соответствующих регуляторных последовательностей, встраивании их в вектор в определенном порядке и клонировании гена-мишени таким образом, чтобы обеспечивалась его эффективная экспрессия. На практике же создание первого поколения эукариотических экспрессирующих векторов оказалось весьма кропотливым делом, основанным на методе проб и ошибок. До появления работы Муллигана, Хоуарда и Берга [c.146]

    Для вьщеления специфических гетерологичных белков из клеточных экстрактов и из смесей секретируемых белков можно использовать разные подходы. Один из них основывается на присоединении к клонированному гену - без нарущения рамки считывания - сегмента ДНК, кодирующего короткую аминокислотную последовательность, которая специфически связывается с каким-либо химическим элементом, соединением или макромолекулой. Такую конструкцию встраивают в экспрессирующий вектор между промотором и сайтом терминации транскрипции. Короткая аминокислотная последовательность в составе рекомбинантного белка, синтезируемого в хозяйской клетке, играет роль аффинной метки. В одном случае перед клонированным геном был встроен - без нарущения рамки считывания - сегмент ДНК, кодирующий щесть остатков гистидина (Hisg), спейсерный участок, кодирующий семь аминокислот, и сайт [c.149]

    Для этого хозяйские клетки одновременно трансфицировали двумя экспрессирующими векторами млекопитающих, каждый из кото- [c.152]

Рис. 7.16. Экспрессирующий вектор с двумя независимо транскрибируемыми генами. Клонированные гены (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как часть отдельной единицы транскрипции и находится под контролем эукариотического промотора (р) и сигнала полиаденилирования (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат сайты инициации репликации, функционирующие в Е. соИ (оп ) и в клетках млекопитающих (р /сик) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.16. <a href="/info/200120">Экспрессирующий вектор</a> с двумя независимо транскрибируемыми генами. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как <a href="/info/1680714">часть отдельной</a> <a href="/info/1325072">единицы транскрипции</a> и находится под контролем эукариотического промотора (р) и сигнала полиаденилирования (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. соИ (оп ) и в <a href="/info/200744">клетках млекопитающих</a> (р /сик) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, <a href="/info/200493">селективный маркерный</a> ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра).
    Внехромосомные экспрессирующие векторы млекопитающих обычно применяют для синтеза гетерологичных белков, использующихся в научных или медицинских целях. Они представляют собой челночные векторы с сайтами инициации репликации вируса животных и Е. со//-плазмиды. Регуляторные элементы транскрипции обычно происходят из генома вируса животных или из геномов млекопитающих. Для отбора трансфицированных клеток используют доминантные селективные маркерные гены. Некоторые системы отбора основаны на введении в среду возрастающего количества цитотоксичного соединения и позволяют получать клетки, содержащие большое число копий вектора, что увеличивает выход чужеродного белка. [c.155]

    Е. соИ. При ренатурации одиночных цепей из одной пробирки образуются линейные молекулы. В клетках Е. oli стабильно поддерживаются в виде плазмид и наследуются только кольцевые, а не линейные молекулы, при этом все они несут сайт-специфическую мутацию. Таким образом, с помощью описанного метода можно вносить точ-ковые мутации в клонированный ген, при этом отпадает необходимость во встраивании гена в ДНК фага М13, использовании мутантных штаммов Е. соН типа dut ung и в переносе мутантного гена из Ml 3-вектора в экспрессирующий вектор. [c.163]


Смотреть страницы где упоминается термин Экспрессирующие векторы: [c.107]    [c.109]    [c.111]    [c.111]    [c.117]    [c.121]    [c.121]    [c.121]    [c.137]    [c.137]    [c.139]    [c.140]    [c.141]    [c.142]    [c.142]    [c.143]    [c.145]    [c.146]    [c.146]    [c.149]    [c.150]    [c.150]    [c.154]    [c.157]    [c.216]    [c.220]   
Смотреть главы в:

Новое в клонировании ДНК Методы -> Экспрессирующие векторы


Молекулярная биотехнология принципы и применение (2002) -- [ c.107 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.335 ]

Гены и геномы Т 2 (1998) -- [ c.354 , c.355 , c.356 , c.357 , c.358 , c.359 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2024 chem21.info Реклама на сайте