Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бумага прочность механическая

    В качестве наполнителей применяют различные неорганические и органические материалы — порошкообразные, волокнистые или слоистые. К порошкообразным материалам относятся древесная мука, опилки, некоторые минеральные вещества к волокнистым— асбест, стеклянное волокно к слоистым — текстиль, стеклянная ткань, древесная стружка, бумага и др. (Газонаполненные пластмассы — пенопласты и поропласты — составляют особую группу.) Наибольшее повышение механической прочности достигается обычно при применении слоистых и волокнистых наполнителей. В табл. 68 сопоставлены основные механические свойства пластмасс, приготовленных на основе полиэфирной смолы, со свойствами смолы в чистом состоянии, а также со свойствами сплавов алюминия и конструкционной стали. [c.597]


    Механические свойства пластмасс с наполнителем в значительной степени зависят от свойств и количества наполнителя. Для некоторых из них (текстолит, стеклопластики) особенно важна ориентация волокон или ело-ев бумаги (ткани), составляющих наполнитель. Но даже и при неблагоприятном направлении разрушающих нагрузок пластмассы с наполнителями обнаруживают высокую прочность в условиях криогенных температур. [c.155]

    Определение механических свойств, т.е. различных показателей прочности целлюлозы или готовой бумаги (прочность на разрыв, сопротивление продавливанию, раздиранию, излому) и др. [c.542]

    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]

    ОСНОВНЫХ способа печной (сажа обозначается буквой П), канальный (буквой Д, так как сажу извлекают из диффузионного пламени) и термический (буквой Т). Свыше 80% всей вырабатываемой сажи идет на производство резины. В результате введения са ки в резиновую смесь значительно увеличивается механическая прочность резины н, следовательно, срок службы резиновых изделий. Сажа применяется также для изготовления типографских красок, копировальной бумаги, карандашей, изоляционных материалов и т. п. [c.146]

    Смесь меламиноформальдегидных и фенолоформальдегидных полимеров в сочетании с древесным щпоном, целлюлозой, тканью или бумагой употребляют для производства пресс-материалов, декоративных бумажно-слоистых пластиков и облицовочных плит. Модифицированные меламиноформальдегидные полимеры используются в качестве лаков холодной и горячей сущки, обладающие высокой водо- и атмосферостойкостью. Эти же полимеры, модифицированные касторовым маслом, сохраняют хорощую механическую прочность даже при высокой температуре. Прекрасная совместимость меламиноформальдегидных полимеров с нитроцеллюлозой позволяет применять их для получения нитролаков, которые идут на покрытие мебели и различных изделий из древесины. [c.427]


    Все шире развивается производство древесной массы, успешно используемой в производстве бумаги и картона различных марок. Обычная древесная масса получается механическим истиранием древесины на цилиндрических камнях с шероховатой поверхностью — дефибрерах, в присутствии воды. Химическую древесную массу получают или из балансов, пропитанных химикатами, с истиранием их на дефибрерах, или из пропитанной щепы с измельчением ее на рафинерах различного устройства. Выход массы составляет около 85%. Прочность ее в 2—3 раза выше прочности обычной древесной массы. [c.205]

    Фильтровальная бумага не должна содержать клея и других наполнителей, способных при фильтровании загрязнять фильтрат. Критерием при сортировке фильтровальных бумаг служит скорость перемещения по ним жидкостей под действием капиллярных сил. Фильтры, отличающиеся сравнительно большой скоростью фильтрования, пригодны в основном лишь для фильтрования довольно грубых суспензий. Для фильтрования более тонких суспензий применяют более плотную бумагу, скорость фильтрования через которую меньше. Следующим требованием, которому должна отвечать высококачественная фильтровальная бумага,—достаточная механическая прочность. Большой прочностью и особенно устойчивостью к действию сильнокислых или щелочных растворов обладают беззольные фильтры. Эти фильтры освобождают от большей части минеральных примесей путем обработки их соляной или фтористоводородной кислотой. Они выпускаются в виде кружков определенных диаметров [c.42]

    В качестве наполнителей применяют различные неорганические и органические материалы — порошкообразные, волокнистые или слоистые. К порошкообразным материалам относятся древесная мука опилки, некоторые минеральные вещества к волокнистым — асбест стеклянное волокно к слоистым — текстиль, стеклянная ткань, дре весная стружка, бумага и др. (газонаполненные пластмассы — пено пласты и поропласты — составляют особую группу). Наибольшее повы шение механической прочности достигается обычно при применении слоистых и волокнистых наполнителей. [c.225]

    Широкое распространение метода бумажного электрофореза обусловлено такими свойствами бумаги, как механическая прочность, способность удерживать большое количество электролита и образца, возможность придания требуемой формы, легкость применения двухмерных методов и простота элю ирования образца. Обнаружение проводится или погружением в раствор реагента или опрыскиванием этим раствором. Электрофореграмму после высушивания можно хранить. Однако бумага имеет и ряд недостатков это неоднородность бумаги вдоль листа, пористость, которая удлиняет путь перемещения вещества. В ре- [c.289]

    Первые промышленные способы химической переработки сырья, содержащего клетчатку, возникли в связи с развитием бумажной промышленности. Бумага — это тонкий слой волокон клетчатки, спрессованных и проклеенных для создания механической прочности, гладкой поверхности, для предотвращения растекания чернил. [c.311]

    Результаты испытания изоляционных бумаг на механическую прочность до и после старения в маслах различной глубины очистки [c.111]

    Бумаги высокой механической прочности (США) изготовляют также из орлона или дакрона они отличаются высокой коррозионной стойкостью и износостойкостью. Материал склеивают бромистым калием, бромистым литием или специальными сортами клея. Эти бумаги лучше нормальных, рекомендуются для изготовления личных документов, денежных знаков, географических карт, светокопировальной бумаги. [c.143]

    С повышением тонкости фильтрования однотипных материалов их стоимость увеличивается [84]. Некоторые материалы при сравнительно низкой стоимости обладают хорошими фильтрационными показателями (например, бумага, отдельные виды тканей), но механические показатели их невысоки. Дорогостоящие материалы (металлические сетки, металлокерамика и т.п.) обычно применяют для фильтрования масел при высоких температурах и давлениях, т.е. при тех условиях, когда бумага, ткани и подобные фильтрующие материалы не обладают достаточной прочностью и стабильностью. [c.235]

    Первоначально для изготовления бумаги использовалось растительное сырье, из которого чисто механически можно получить необходимые волокна клетчатки стебли риса (рисовая бумага), хлопок. Большую роль играло вторичное сырье. Однако по мере развития книгопечатания эти источники сырья перестали удовлетворять растущую потребность в бумаге. Особенно много бумаги стали требовать газеты, причем вопрос о качестве (белизне, прочности, долговечности) здесь оказался уже второстепенным, поскольку газета живет один день. Зная, что древесина примерно на 50 % состоит из клетчатки, к бумажной массе стали добавлять размолотую древесину. Однако такая бумага непрочна, быстро желтеет (особенно на свету). [c.311]

    Полиметилметакрилат — прозрачная, бесцветная стекловидная твердая масса. Прочность стекла, изготовленного из полиметилметакрилата, превосходит в десятки раз прочность обычного силикатного стекла. Органическое стекло может быть подвергнуто механической обработке. Из него изготовляются стекла для самолетов, различные предохранительные стекла в аппаратах и приборах, оптические и часовые стекла. Полиметилметакрилат может быть получен в виде порошка для изготовления изделий прессованием и литьем под давлением. Такой порошок применяется, например, для производства зубных протезов, широкого ассортимента бытовых изделий. Полиметилметакрилатными эмульсиями пропитывают ткани, бумагу и т. п. [c.389]


    МЕЛАМИН зHaNJ — бесцветные кристаллы, т. пл. 354 С малорастворим в воде, спирте. В большинстве органических растворителей нерастворим. Аминогруппы придают М. основные свойства. В промышленности М. получают из дн-циандиамида или из мочевины. М. применяют, главным образом, в производстве пластмасс, лаков, клеев, отличающихся высокой механической прочностью, малой электропроводностью, водо- и термостойкостью. В текстильной промышленности М. используется для изготовления не-мнущихся и безусадочных тканей в бумажной — для производства водонепроницаемой бумаги в деревообрабатывающей — для склеивания древесины, получения лаковых покрытий. Кроме того, М. применяется для приготовления ионообменных смол, дубильных веществ и др. [c.158]

    Вполне безопасными для укрепления ветхих тканей являются фторлоновые лаки. Получаемые пленки гидрофобны, сохраняют физикомеханические свойства в широком интервале температур (от —50 до +250 °С), биостойки, устойчивы к фото- и термоокислительной деструкции, не изменяют оптических характеристик поверхности обрабатываемого материала, естественной фактуры, не придают материалу жесткости. Фторлоновые лаки (1—5 %-е) рекомендуют для реставрации ветхих тканей и бумаг, в первую очередь, для восстановления их механической прочности. Применяют растворы фторопластов в смеси сложных эфиров и кетонов (например, в смеси ацетон — этилацетат - амилацетат), отдельные марки растворимы в ацетоне, метилэтилкетоне, этилацетате, Фторлоновые лаки, закрепляя нити ткани, гидрофобизируют ее поверхность таким образом, что после этого допустимы очистка, отбеливание, обработка глицерином, удаление высолов и выведение локальных пятен. Особенно эффективно использование фторлоновых лаков для укрепления почти полностью деструктурированных тканей на местах археологических раскопов. [c.232]

    Этикетки элементов и батарей печатают на писчей и декоративной бумаге. Широкое применение в изготовлении источников тока получила кабельная бумага. Эта бумага легко впитывает электролит, композиции и обладает хорошей механической прочностью. Все применяемые бумажно-картонные материалы не содержат соединений железа и тяжелых металлов и химически устойчивы в применяемых электролитах. [c.67]

    ПО сравнению с исходным (состояние поставки), возможность улучшения механических свойств металла при его контакте с ингибированными кислыми средами. Опыты подтвердили это предположение и показали, что в данном случае действительно повышается и долговечность образцов металла под нагрузкой и их пластичность. Циклическая прочность образцов проверялась после их шлифования, обезжиривания, промывки, высушивания фильтровальной бумагой и выдержки в эксикаторе над хлористым кальцием. Циклические напряжения создавались симметричным изгибом консольно закрепленных образцов. Частота изгибов составляла 500 циклов в минуту, уровень нагрузки а = 200 МПа, база испытаний М = 2 10 циклов, показатель прочности — время до разрушения образца при указанных условиях. Величина эффекта упрочнения, рассчитанная по методике [145], приведена в табл. 7 [152].Таким образом, прочность металла повышается при травлении в серной кислоте с добавками катапина, КПИ-1 и КПИ-3, что может продлить срок службы изделий или при неизменном сроке сэкономить металл и уменьшить сечение изделия. [c.45]

    Бумага, получаемая на основе древесной массы или хлопкового волокна (вторичное сырье и т. д.), представляет собой целлюлозный материал, прочность которого обусловлена водородными связями между волокнами. При погружении в воду эти водородные связи ослабляются, поэтому прочность обычной бумаги через несколько минут или часов уменьшается до малой доли прочности в сухом состоянии и в дальнейшем уже не изменяется. Если, однако, высушить бумагу, не прикладывая к ней при этом чрезмерно больших механических усилий, то исходная проч- [c.472]

    Надмолекулярная структура, являясь одним из наиболее сложных и противоречивых вопросов физики полимеров, имеет очень важное значение для теории и практики. От надмолекулярной структуры зависят физические свойства полимеров (плотность, механическая прочность, температуры переходов и др.), физико-химические (растворимость) и химические (химическая реакционная способность). С особенностями надмолекулярной структуры связана и переработка полимеров в изделия (получение пластмасс, волокон, пленок, бумаги и т.д.). [c.130]

    Для изготовления банковской, документной, картографической, сигаретной и других видов высокосортной бумаги ранее использовалось исключительно тряпичное сырье. Химики давно установили, что семенные волоски хлопчатника — хлопок, а также лубяные волокна льна состоят практически из чистой высококачественной целлюлозы. Целлюлоза тканей обеспечивает бумаге высокие физико-механические свойства, такие, как прочность на изгиб, растяжимость, воздухопроницаемость, стойкость к влаге и свету, а следовательно, обеспечивает долговечность. В настоящее время в состав тканей часто вводят искусственные волокна. Они придают тканям ряд ценных свойств. Однако отходы таких тканей и соответствующее тряпье непригодно для бумажного производства, так как плохо поддается переработке. Поэтому значение тряпья в бумажном производстве в настоящее время резко снизилось. [c.38]

    Техническая древесная целлюлоза может использоваться для производства бумаги и картона, а также и для химической переработки. Целлюлоза для бумаги должна иметь высокие показатели механической прочности, а для писчей и печатной бумаги - и высокую белизну. Целлюлоза, предназначенная для химической переработки, должна иметь высокую степень чистоты (содержать мало примесей), степень полимеризации в оптимальном интервале, обеспечивающем хорошую растворимость получаемых производных, и высокую степень однородности по степени полимеризации и по реакционной способности. [c.539]

    В настоящее время в распоряжении химиков имеются фильтры на основе бумаг и тканей из различных синтетических материалов-полиамидов, полиэфиров, полиэтилена и полипропилена, поливинилхлорида и его сополимеров с винилацетатом и акрилонитрилому нитрона и других. К преимуществам синтетических фильтровальных материалов относится их высокая механическая прочность в сочетании с термостойкостью (кроме некоторых полимеров), устойчивость к действию многих агрессивных жидкостей. [c.99]

    Было показано также [62], что если удалить из холоцеллюлозы легко растворимые в воде и разбавленной щелочи фракции гемицеллюлоз, прочность получаемой из нее бумаги увеличивается. Однако если удалить этим путем значительную часть гемицеллюлоз, то способность волокон склеиваться резко падает и получается непрочная бумага [62, 66—67]. Например, были получены в мягких условиях сульфитные буковые целлюлозы с разным выходом, которые затем отбеливались хлором [67]. Опыты показали, что наиболее прочная бумага получалась из целлюлозы с выходом 50—52%. Эта целлюлоза содержала 80,9% а-целлюлозы, 1,09% лигнина и около 18% гемицеллюлоз. При этом оказалось, что не все показатели механической прочности бумаги имели максимальные [c.389]

    Следует отметить, что введение комплексонов в составы на основе полисилоксанов для обработки упаковочной бумаги улучшает ее физико-механические свойства- уменьшается набухание в воде и маргарине, уменьшается адгезия к маргарину (т. е. потери жирового продукта за счет прилипания к упаковке), увеличивается прочность на разрыв в мокром состоянии. Это связано вероятно с тем, что комплексоны способствуют закреплению полисилоксана на материале. [c.491]

    Картон по физическим свойствам и применению сходен с бумагой, но отличается от нее значительно большей толщиной (до 2 мм) и механической прочностью. Из картона изготовляют коробочки для отпуска порошков, ампул, ряда ректальных лекарств, пилюль, таблеток, капсул. [c.83]

    На рис. 42 даны внешний вид и конструкция батарей для карманного фонаря 3 336-Л. Батарея состоит из трех иоследователь-но соединенных элементов № 336 и имеет ленточные контактные токоотводы из белой жести. Для предотвращения случайного замыкания токоотводов их заклеивают (бандажируют) бумагой. Футляры батарей делают из кабельной или шиульной бумаги, обеспечивающей механическую прочность батареи. [c.81]

    Еще более показателен следующий факт. Если отлив бумаг.и производить не из взвеси волокон в воде, а из взвеси их в среде, вызывающей слабое набухание целлюлозы, например в спирте, то прочность такой бумаги оказывается очень низкой. Кстати, этот пример свидетельствует о том, что доля прочности бумаги, обусловленная механическим зацеплением между волокнами, чрезвычайно мала по сравнению с той долей, которую вносит монолитизация волокон в местах контакта. [c.195]

    Битумные мастики готовят в битумоварочных котлах. Очищенный от бумаги и включений битум расплавляют в котле при температуре 140-150 °С. Когда температура битума достигает 170-180 "С, в него при непрерывном перемешивании добавляют наполнитель. Для приготовления мастик применяют нефтяные битумы строительные марок БН 50/50, БН 70/30, БН 90/10 изоляционные марок БНИ-1У, БНИ-У, БНИЗ-1У специальные марок Б, В, Г. Эти битумы отличаются друг от друга температурой размягчения, глубиной проникновения иглы и растяжимостью. Для противокоррозионной защиты металлических подземных сооружений в нефтяной и газовой промышленности используют битумы нефтяные, строительные и изоляционные. Мастики по сравнению с битумами имеют лучшие характеристики - повышенную вязкость в расплавленном состоянии, большую механическую прочность и более высокую температуру размягчения. [c.79]

    Бутылки для молока обычно покрывают толстым слоем парафина, так как кроме водоотталкивания требуется также механическая прочность, а упаковка для замороженных продуктов обычно пропитывается более тш ательно. Кристаллический парафин составляет основную массу продукта, используемого для покрытия бумаги, но в настояш ее время широко используется смешение его с церезином и даже с другими добавками, такими как полиэтилен для получения желаемых свойств. Например, обычный парафин слишком хрупок при низких температурах, поэтому для придачи гибкости к нему примешивают мягкий церезин, получая продукт, пригодный для изготовления тары для замороженных продуктов. [c.531]

    Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга. Этим объясняется малая механическая прочность графита. Если провести куском графита по бумаге, то мельчайшие кристаллики графита, имерэщие вид чешуек, прилипают к бумаге, оставляя па ней серую черту. На этом основано применение графита для изготовления карандашей. [c.435]

    Из табл. 9 видно, что пропитка бумаги-основы фенолформаль-дегидными смолами не только повыщает механическую прочность бу-маги, но и влияет на ее пропускную способность. У крупнопо- кггсй бумаги после пропитки пропускная способность несколько увеличивается, главным образом за счет однотипности электрических зарядов смолы, топлива и асфальтосмолистых продуктов загрязнения у мелкопористой - снижается из-за резкого уменьшения размера пор. [c.108]

    Пропитанные или лакированные материалы состоят из волокнистой основы (ткани, бумаги, шнура) и полимерного материала, покрывающего тонким слоем поверхность волокон, ткани или бумаги. К этой группе материалов относятся лакоткани, лакобумаги, лакированные трубки. Чтобы получить такие материалы, волокнистую основу пропитывают лаком и сушат. Ткань или бумага сообщают изделию высокую механическую прочность и гибкость, а пленка из полимерного материала — высокую электрическую прочность и другие диэлектрические свойства. [c.29]

    После ослабления водородных связей вследствие намокания, для дальнейшего разрушения бумаги, вплоть до распада материала, требуется воздействие механических или биологических факторов. Механические нагрузки, необходимые для разрыва, зависят от прочности бумаги на разрыв во влажном оостоянии. Этот параметр изменяется в зависимости от типа волокна и связующего. Биологическое разрушение бумаги (точнее, целлюлозы) морскими точильтциками или микроорганизмами определяется в основном местом экспозиции. Обычная бумага скорее всего будет разрушена при экспозиции в прибрежной зоне на глубине менее 200 м или на любой глубине при расстоянии около 1 м от дна, т. е. в областях наибольшей биологической активности. Однако под слоем ила бумага и другие материалы на основе целлюлозы могут сохраняться без разрушений по 200 лет и более (см. ниже). [c.473]

    Стойкость бумаги можно улучшить путем введения добавок, повышающих прочность на разрыв во влажном состоянии. В обычной бумаге для письма и печати такие добавки встречаются редко, но могут присутствовать в фотобумаге, бумаге для карт и т. д. Бумага йа основе хорошей тряпичной массы в сочетании с модифицирующей смолой может в течение длительного времени сохранять прочность на разрыв во влажном состоянии, очень близкую к прочности в сухом со -стояпии. В это время она может выдержать значительные механические нагрузки и не разорваться. Вместе с тем существуют и очень слабые сорта бумаги, нанример газетная, которые быстро разрушаются в воде уже при малых или даже незаметных механических воздействиях. Как слабые сорта, так и бумага с повышенной прочностью во влажном состоянии обычно не используются для письма или печати (за исключением газетной бумаги). [c.473]

    В июне 1964 г. археологическая группа исследовала испанский галеон, затонувший между 1650 и 1700 гг. у побережья Флориды на расстоянии около 6,5 км от берега на глубине 12—14 м. На дне под слоем ила были найдены несколько листков бумаги, на основе льняного волокна, покрытых хорошо различимым готическим шрифтом, напечатанным краской, содержащей ламповую сажу и растительное масло. После высушивания бумага обладала прочностью, которая согласно оценке была близка к первоначальной. Хотя эта бумага и чернила, изготовленные из высококачественных натуральных продуктов, обладают, возможно, более высокой стойкостью, чем современные материалы, все же столь длительная сохранность этих до кументов в условиях отсутствия биологических и механических воздействий показывает, что, в принципе, бумага может выдерживать даже продолжительную экспозицию в морской воде в биологически активных областях при наличии некоторой защиты. [c.474]

    Второй слой имеет высокую пористость и большую толщину, обеспечивающую механическую прочность всей мембраны. Слои могут бьггь изготовлены из одного и того же полимера или из разных полимеров. Рабочий слой может быть нанесен на любой пористый материал (ткань, бумага и т. д.), если при этом обеспечивается надежная адгезия материала мембраны на выбранной подложке. [c.564]

    Устранить влияние многих факторов разрушения, связанных с общей экологической обстановкой, практически невозможно, поэтому особенно важно проводить различные консервационные и реставрационные работы, нейтрализующие это влияние химическое укрепление частично разрушенных материалов, защиту их от воздействия солнечной радиации, кислотных окислов в воздухе и воде, биологических разрушающих факторов. Существенной является работа по сохранению целостности объекта реставрации консолидация, соединение фрагментов, обобщение руинированных стен или листов бумаги способствует восстановлению механической прочности, способности противостоять дальнейшему разрушению. [c.7]


Смотреть страницы где упоминается термин Бумага прочность механическая: [c.382]    [c.85]    [c.185]    [c.196]    [c.48]    [c.279]    [c.82]    [c.344]    [c.53]    [c.206]   
Химия коллоидных и аморфных веществ (1948) -- [ c.3 , c.4 , c.5 , c.6 , c.7 , c.8 , c.9 , c.10 , c.11 , c.12 , c.13 , c.14 , c.15 , c.16 , c.17 , c.18 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Механическая прочность



© 2025 chem21.info Реклама на сайте