Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Древесная мука

Рис. ХИ-З. Схема приема и подготовки древесной муки в производстве пресс-материалов Рис. ХИ-З. Схема приема и подготовки древесной муки в производстве пресс-материалов

    Древесную муку применяли в качестве наполнителя для придания изделиям повышенной механической прочности. На рис. ХП-З показана схема приема и подготовки древесной муки. [c.267]

    В качестве наполнителей применяют различные неорганические и органические материалы — порошкообразные, волокнистые или слоистые. К порошкообразным материалам относятся древесная мука, опилки, некоторые минеральные вещества к волокнистым— асбест, стеклянное волокно к слоистым — текстиль, стеклянная ткань, древесная стружка, бумага и др. (Газонаполненные пластмассы — пенопласты и поропласты — составляют особую группу.) Наибольшее повышение механической прочности достигается обычно при применении слоистых и волокнистых наполнителей. В табл. 68 сопоставлены основные механические свойства пластмасс, приготовленных на основе полиэфирной смолы, со свойствами смолы в чистом состоянии, а также со свойствами сплавов алюминия и конструкционной стали. [c.597]

    Встречаются и более сложные комбинации операций смешения и увлажнения компонентов и формования катализатора. Так, например, одну часть сухой смеси размолотых компонентов увлажняют водой до пастообразного состояния, формуют, смешивают с другой частью смеси, увлажняют водой до пастообразного состояния, смешивают с древесной мукой и направляют на формование методами экструзии или прессования. [c.22]

    Учитывая возможность затирания древесной муки в механизмах и ее склонность к образованию очагов тления ( жучков ), необходимо отдавать предпочтение пневмотранспорту. Однако при использовании пневмотранспорта создаются высокие заряды статического электричества, что также может привести к загораниям и взрывам. Поэтому для пневмотранспорта нужно применять инертный газ или разработать другие специальные защитные меры. [c.269]

    Профилактические мероприятия по борьбе с пожарами, загораниями и взрывами пыли древесной муки должны быть направлены главным образом на исключение возможности образования смесей пыли с воздухом взрывоопасных концентраций и устранение источников воспламенения. [c.269]

    Пористость катализаторов повышают добавлением к ним горючих материалов (выгорающие добавки) древесный уголь, газовую сажу, смолистые вещества, древесную муку, целлюлозу, крахмал. В случае формования катализаторов таблетированием к ним иногда добавляют графит, выполняющий роль смазки. При гранулировании катализаторов используется добавка (3%) сульфитного щелока — продукта, образующегося при обработке целлюлозы бисульфитом кальция. [c.20]

    К, Mg, 5г, Ва, окислы В, Ре, Сг, N1. Мп). Большую часть смеси увлажняют водой до пастообразного состояния, формуют и прокаливают при 1350 С. Сформованный материал измельчают, смешивают с остальной частью смеси, увлажняют водой до пастообразного состояния, затем смешивают с древесной мукой, формуют методом экструзии или прессованием и прокаливают при 1400 С или при более высокой температуре [c.65]


    На одном из предприятий по производству пластмасс произощла авария в отделении подготовки древесной муки па складе. Взрывом пылевоздущной смеси была разрушена часть здания склада, технологическое оборудование и коммуникации. Последствия взрыва хорошо иллюстрируются рис. ХП-2. [c.266]

    Специально вводимые в носитель порообразующие (выгорающие) добавки используются в очень больших количествах и при этом существенно повышают его пористость. При изготовлении носителя в качестве выгорающих добавок используют до 10% опилок (древесной муки), до 30% нефтяного кокса и до 60% древесного угля. С этой же целью используют также древесную стружку, ореховую скорлупу и кочерыжки кукурузного початка. [c.30]

    Волокнистые прессовочные материалы имеют более высокие показатели физико-механических свойств, чем прессовочные порошки, полученные на основе древесной муки. [c.63]

    Метод [53—58], который не служит для получения чистого глицерина, а дает скорее смесь глицерина с другими гликолями, основан на углеводах как исходных веществах (крахмал, древесная мука и сахар, особенно тростниковый). Из углеводов в результате гидролиза получают сначала гексозы, которые затем гидрируют в 40— 50% водном растворе в присутствии 6% никеля под давлением водорода 300 кгс/см2 и при температуре, повышающейся от 80 до 180 °С. После выпаривания реакционная смесь — глицероген — состоит примерно из 35—40% глицерина, 25—30% пропиленгликоля, 5—10% этиленликоля, 1—6% воды и гекситов. [c.192]

    Катализатор содержит (мас.%) 15—30 N 0. 0.5—1,5 МпО. 25—50 1 идравлического цемента. Цемент может содержать более 10% окислов щелочноземельных металлов, а катализатор — 10—25% каолина, окиси магния целлюлозы, древесной муки или отработанного катализатора. Добавление [c.65]

    Пластичная каолиновая глина, древесная мука, азот, сероводород, хлористый аммоний [c.88]

    В качестве вспомогательных веществ применяется большое число разнообразных материалов, к которым, в частности, относятся диатомит, перлит, асбест, целлюлоза, древесная мука, древесный уголь, силикагель, гипс, летучая зола, а также смеси этих материалов, например диатомита с перлитом, диатомита с асбестом. [c.338]

    Для очистки на барабанном вакуум-фильтре сточных вод, содержащих ртуть, рекомендовано смешанное вспомогательное вещество, содержащее перлит и древесную муку в соотношении 3 1 [369]. [c.348]

    Древесная мука [370]. Это вспомогательное вещество, применяемое также в большом количестве как наполнитель для пластмасс, целесообразно использовать в тех случаях, когда твердые частицы, отделяемые от исходной суспензии, представляют собой ценный продукт, который можно подвергать обжигу. Для примера следует указать на производство двуокиси титана, образующейся при обжиге смеси древесной муки и частиц метатитановой кислоты эта смесь получается в виде фильтровального осадка после разделения соответствующей суспензии со слоем вспомогательного вещества. [c.348]

    Древесный уголь используется не только в активированной форме для обесцвечивания и адсорбции растворимых примесей, но и в неактивированной форме в качестве вспомогательного вещества. Древесный уголь применяется, в частности, для разделения суспензий с химически агрессивной жидкой фазой (сильные кислоты и щелочи). Подобно древесной муке, он используется, когда задержанные им твердые частицы суспензии можно подвергать об- [c.348]

    Исследованы [370] фильтрационные свойства диатомита, древесной муки, силикагеля, летучей золы, сульфоугля (размер частиц 0,2—0,75 мм) с использованием суспензий гидроокисей алюминия и железа, которые разделялись на лабораторном фильтре типа воронки. Начальная толщина слоя вспомогательного вещества на фильтре составляла 60 мм при проведении серии опытов внешняя часть этого слоя толщиной 10 мм по окончании каждого опыта срезалась ножом. Получены данные о коэффициенте проницаемо- [c.356]

    Фенолоальдегидные прессовочные материалы — это композиции на основе новолачных и резольных олигомеров с органическими и неорганическими наполнителями и другими добавками (отвердители, красители, смазывающие вещества). Органическими порошкообразными наполнителями служат древесная мука, молотый кокс, графит. В качестве минеральных наполнителей используют кварцевую муку, каолин, молотую слюду и др. К волокнистым наполнителям относят хлопковый линт, асбест, стекловолокно, тканевую крошку. Ьтвердителями являются уротропин, известь смазывающими веществами— стеарин, стеараты. [c.60]

    Процесс сопровождается выделением воды. Фенолоформальдегидные СМС1ЛЫ обладают замечательным свойством при нагревании они вначале размягчаются, а при дальнейшем нагревании (особенно в присутствии соответствующих катализаторов) затвердевают. Из этих смол готовят ценные пластические массы — фенопласты смолы смешивают с различными наполнителями (древесной мукой, измельченной бумагой, асбестом, графитом И Т. п.), с пластификаторами, красителями, и из полученной массы изготовляют методом горячего прессования различные изделия. В последние годы фенолоформальдегидные смолы нашли новые области ноименения, например, производство строительных деталей из отходов древесины, изготовление оболочковых форм в литейном деле. [c.505]

    В смеситель 13 для пропитки древесной муки фенолоспиртами мука подается сжатым воздухом через инжекторы 12 из бункеров 11, расположенных в растарочном отделении. [c.267]

    Анализ показывает, что аварии вызывались следующими обстоятельствами неравномерным питанием мельниц (22,0%), попаданием в мельницы металла (15,0%), затиранием продукта в мельницах (13,0%), неточной установкой жерновов (10,0%), самозаго-ранием древесной муки на разогретой поверхности жерновов (9,0%), металлическими включениями в жерновах (7,5%), неправильной остановкой и пуском жерновых мельниц (7,5%), неисправностью электрооборудования (6,0%) и прочими причинами (10,0%)- Тяжесть последствий аварий усугублялась недостаточной величиной легкосбрасываемых панелей здания. [c.270]


    В день аварии через два часа после начала рабо-ты, когда в производство было подано около ста мешков древесной муки, в помещении растаривания появился запах горевшей муки, и через некоторое время произошел взрыв. Возникший при взрыве пожар распространился на железнодорожные вагоны с древесной мукой, стоявшие около грузовой панели здания. [c.267]

    Таким образом, причиной воспламенения древесной муки на складе послужила неисправность подвесного подшипника, в котором произошло затирание древесной муки и ее загорание (обуглившаяся мука была обнаружена в коробе шнека). Тлевшая древесная мука ( жучок ) из шнека попала в элеватор 4 (см. рис. ХП-З) и вызвала воспламенение и первоначальный взрыв взвешенной в нем пыли древесной муки. При взрыве стенки элеватора разорвались по сварным швам, через которые выбросило большое количество пыли древесной муки в помешение склада, что привело к образованию взрывоопасной пылевоздушной смеси и повторному объемному взрыву большой разрушительной силы в помещениях элеватора 4, шнеков <3, 5 и в помещении растаривания древесной муки. [c.268]

    Метод загрузки древесной муки из мешков в растаривающее устройство не исключал возможности локального взрыва, так как высота падения распыленной муки составляла 1 м, что при наличии источника воспламенения могло привести к взрыву. [c.269]

    Известен случай взрыва смеси древесной муки с воздухом, который произощел на предприятии одной из иностранных фирм. [c.269]

    Носитель получают смешением мел-коизмельченной каолиновой глины и древесной муки или других выгорающих добавок (нефтяной кокс, крахмал, сажа и др.)- Объемное отношение древесной муки к глине от 0,15 1 до 1 1. Смесь формуют, нагревают в окислительной атмосфере- при температуре 815° С и обрабатывают при 650° С газообразными реагентами (хлористый аммоний и сероводород) для превращения основного количества примеси железа в летучую или растворимую в кислоте форму. Примеси железа затем отдувают или промывают. После промывки кислотой глину сушат и прокаливают при [c.88]

    Формованные объемные фильтры изготавливают из тех же материалов, что и набивные, но благодаря применению склеивающего вещества они приобретают более равномерную плотность и структуру. Материалом для формования фильтров может служить минеральная вата и древесная мука (двигатель ЯМЗ), а также хлопковые нити с древесными волокнами (английская фирма Winslow). Фильтрующие элементы, формованные из хлопковопдревесной массы, имеют переменную пористость, что повышает степень использования их объема. Этот принцип получил развитие в японском фильтре, где формованный фильтрующий элемент многослойный первый слой —омесь древесной массы и искусственного волокна, второй — бумажная масса, третий — смесь бумажной массы и искусственного волокна. Формованные фильтрующие элементы удобнее в эксплуатации, чем набивные, так как на их замену в корпусе фильтра требуется гораздо меньше времени и при этом исключается довольно трудоемкая операция по равномерному уплотнению фильтрующего материала. В остальном им свойственны недостатки набивных фильтров. [c.260]

    Каолиновую глину смешивают с 10% древесной муки, формуют в цилиндры диаметром 4 мм, сушат при температуре 65° С и прокаливают сначала в токе воздуха при температуре 815° С, затем в течение 2 ч в токе газовой смеси Нг5 (25%), N2 (75%), далее 2 ч при температуре 450° С и давлении 300 мм. рт. ст. в потоке газовой смеси МН4С1 + N2 с объемной скоростью 5 мин . Из полученного катализатора при температуре 510° С потоком азота отдувают избыток РеС1з и NH4 I, затем катализатор прокаливают при 815° С. При этом содержание РезОд понижается от 0,73 до 0,16% [c.88]

    Смеси жидкого кислорода с угольным порош ом, древесной мукой или дру гнми горючими веществами называются оксиликвитами. Оги обладают оче н сильными взрывчатыми свойствами и применяются при подрывных работах. [c.378]

    Непрерывный вальцевый метод получения новолачных пресспорошков состоит в следующем. Древесная мука транспортируется в циклон / (рис. 38), ссыпается в бункер 2 и через бункер-дозатор 3 поступает в барабанный смеситель 4. Новолачный олигомер подается из бункера 5 через бункер-дозатор 6 на окончательное измельчение в молотковую дробилку с воздушной сепарацией (мельницу тонкого помола) 7 и далее через циклон 8 и рукавный фильтр 9 в барабанный смеситель 4. В смеситель 4, снабженный винтообразными лопастными мешалками, загружают также уротропин и другие добавки. После перемешивания в течение 20— 30 мин смесь поступает в бункер-дозатор 10, из которого подается на вальцы П для непрерывной пластикации. Прессовочный материал с вальцов подается транспортером на предварительное измельчение в зубчатую дробилку 12. При транспортировании материал обдувается струей холодного воздуха, а выделяющиеся пары фенола и формальдегида отсасываются. Раздробленный материал подается в молотковую дробилку 13. Тонкоизмель-ченный пресспорошок воздухом захватывается в циклон 14. Воздух, выходящий из циклона 14, идет в рукавный фильтр 15. а измельченный прессмате-риал самотеком поступает в бункер-дозатор 16 и далее в барабанный смеситель 17 для стандартизации полученного порошка. В смесителе порошок перемешивается в течение 20—30 мин, после чего автоматом 18 расфасовывается в тару. [c.60]

    Выполнены [377] опыты по очистке полифторорганосилокса-новой жидкости вязкостью 500 сСт (при 20 °С) от тонкодисперсных частиц угля при концентрации их до 5% с использованием кизельгура, перлита и древесной муки. Установлено, что наиболее целесообразно применение перлита в виде слоя толщиной 3 мм, предварительно нанесенного на лавсановую ткань, так как кизельгур имеет в 3 раза большую насыпную массу, а древесная мука не задерживает частицы угля. При этом обнаружено, что при пропускании упомянутой жидкости через слой перлита сначала происходит фильтрование с постепенным закупориванием пор (частицы проникают в слой на глубину 1—1,5 мм), а затем — с образованием осадка. Это объяснено наличием в жидкости достаточно большого числа частиц угля, что благоприятствует образованию из них сводиков над входами в поры слоя вспомогательного вещества. [c.358]

    В аппаратах этого типа фильтрующей средой слулшт слой вспомогательного фильтрующего вещества (диатолит или древесная мука), предварительно нафильтровываемого на рабочую поверхность барабана, В настоящее время получают распространение безъячейковые фильтры. В барабане безъячейкового фильтра фильтрующую поверхность образует однородная по всей поверхности перфорированная цилиндрическая стенка, отверстия которой проходят во внутреннюю полость барабана, сообщающуюся с вакуумом. [c.84]

    Введение в пресскомпозицию поберхностно-ак-тивных добавок (жирных кислот или их солей) существенно изменяет адгезию олигомера, а следовательно, и физико-механические свойства фенопластов. Ряд свойств прессовочных материалов (водостойкость, химическая стойкость, диэлектрические свойства, твердость, теплостойкость) определяются природой наполнителя. Так, при введении в пресс-порошки с древесной мукой минерального наполнителя повышаются плотность, твердость, жесткость, теплопроводность и водостойкость материала. Фенолоальдегидные пресспорошки устойчивы к действию слабых кислот и органических растворителей, довольно устойчивы к сильным кислотам и слабым щелочам, но разрушаются при действии сильных щелочей. Недостатками их являются хрупкость и зависимость показателей диэлектрических свойств от температуры и частоты тока. [c.62]

    К порошкообразным наполнителям относятся распространенные деитевые материалы — древесная мука, получаемая тидательным измельчением древесных опилок и стружек, торфяная мука, уголь, сажа, кварцевая мука, песок и другие минеральные наполнители, сообщающие пластическим массам теплостойкость и улучшающие их электроизоляционные свойства. [c.381]


Смотреть страницы где упоминается термин Древесная мука: [c.269]    [c.64]    [c.88]    [c.90]    [c.91]    [c.88]    [c.197]    [c.615]    [c.630]    [c.61]    [c.68]   
Смотреть главы в:

Химико-технические методы исследования Том 3 -> Древесная мука


Фенольные смолы и материалы на их основе (1983) -- [ c.147 , c.149 , c.150 , c.164 ]

Общая химическая технология органических веществ (1966) -- [ c.527 , c.528 , c.551 , c.553 , c.554 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.345 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.345 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.345 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.345 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.0 ]

Технология синтетических смол и пластических масс (1946) -- [ c.126 , c.289 ]

Предупреждение аварий в химическом производстве (1976) -- [ c.259 ]

Общая химическая технология органических веществ (1955) -- [ c.382 , c.401 , c.403 ]

Фенопласты (1976) -- [ c.103 , c.104 ]

Фильтрование (1980) -- [ c.348 , c.356 , c.358 ]

Технология производства полимеров и пластических масс на их основе (1973) -- [ c.249 ]

История химических промыслов и химической промышленности России Том 5 (1961) -- [ c.412 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.438 ]




ПОИСК





Смотрите так же термины и статьи:

Древесный пок

Мука



© 2025 chem21.info Реклама на сайте