Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы ионообменные приготовление

    Наиболее широкое применение получили специальные ионообменные смолы, впервые приготовленные синтетическим путем в 1935 г. Адамсоном и Холмсом. В 1933—1939 гг. Ф. Г. Прохоров [c.115]

    Наиболее щирокое применение получили специальные ионообменные смолы, впервые приготовленные синтетическим путем в 1935 г. Адамсом и Холмсом. В СССР в 1936 г. А. С. Смирнов синтезировал ряд ионообменных смол. В 1939 г. в Германии были получены катиониты и аниониты, названные вофатитами, при конденсации сульфированных фенолов с формальдегидом, а также полиэтиленполиаминов с эпихлоргидрином. Ионообменные смолы по сравнению с неорганическими и сульфированными углями отличаются большой механической прочностью, химической стойкостью, высокой емкостью и производительностью. Они очень разнообразны по свойствам и назначению. [c.125]


    Чтобы получить редокс-ионообменные смолы, ионообменную смолу прежде всего подвергают кондиционированию с целью использования ее в качестве носителя для редокс-групп. Кондиционирование заключается в пропускании смолы через несколько кислотно-основных циклов и заканчивается, давая смолу в водородной форме для катионных смол или в гидроокисной форме—для анионных смол. Техника приготовления ионообменных колонок, кондиционирования ионообменных смол и удаления ионов из растворов [c.52]

    В настоящее время при проведении электродиализа широко применяют ионитовые мембраны, т. е. мембраны из ионообмен- ных смол (стр. 125). Такие мембраны по свойствам приближаются к идеально электрохимически активным и обладают малым электросопротивлением. Из ионообменных смол можно готовить как положительно, так и отрицательно заряженные мембраны. Для приготовления отрицательно заряженных мембран используют катиониты положительно заряженные мембраны готовят из анионитов. [c.227]

    Реактивную бумагу получают также пропитыванием фильтровальной бумаги жидкой ионообменной смолой с поглощенным или поглощаемым впоследствии реагентом [22]. Можно также применять и обычную имеющуюся в продаже хроматографическую бумагу. Реакции на импрегнированной бумаге можно легко использовать для быстрых полуколичественных определений микрограммовых количеств веществ. Для этого измеряют площадь образовавшегося на бумаге пятна и вывод о содержании вещества делают, сравнивая ее со стандартной шкалой, приготовленной таким же образом. [c.55]

    Вофатит Р является продуктом конденсации фенола, формальдегида и сульфита натрия, который сульфируют концентрированной серной кислотой. В продажу Вофатит Р обычно поступает в виДе натриевой соли. Так как ионообменные смолы проявляют каталитические свойства исключительно в кислотной форме, приготовление катализатора заключается собственно в переводе соли в свободную кислоту., Вофатит Р по сравнению с другими ионообменными смолами проявляет большую активность и более устойчив по отношению к механическим факторам, не крошится и не подвергается истиранию в порошок. Активность теряет медленно и может, следо-, вательно, быть применен 10—20 раз. Установленное  [c.853]

    Методом обратного осмоса, при котором предел проницаемости мембран очень низок (менее 100 Да), разделение производится между водой и другими молекулами. Благодаря этому он может служить для концентрации растворов без тепловой обработки. Эта технология малопригодна для приготовления традиционных изолятов. Наоборот, она может найти применение для концентрации предварительно изолированных белков или методом разделения на мембране (электродиализ, ультрафильтрация), или посредством избирательного разделения с использованием ионообменных смол. Однако окончательная концентрация ограничена быстрым увеличением осмотического давления среды и слабым сопротивлением мембран давлению, а также крайним значениям pH или температурам. Наоборот, электродиализ пригоден как средство отбора для приготовления очищенной воды, даже из более или менее концентрированных солевых растворов. С этой точки зрения он может найти применение для частичного рециклирования воды из стоков при осаждении. [c.446]


    Применение ионообменных смол. Белки в растворе в зависимости от их состава могут проявлять сродство к специально приготовленным матрицам, к которым они присоединяются и откуда могут отделяться при воздействии соответствующим реактивом. Взаимодействие с веществом матрицы осуществляется через посредство очень специфичного функционального участка молекулы. Эти участки можно поместить на материал-носитель путем прививки радикалов. К таким материалам в первую очередь относятся смолы, разновидности целлюлозы и кремнеземы, которые при прививке становятся ионообменниками. В соответствии с природой прививаемого радикала различают специфические обменники ионов слабых оснований, сильных катионов, ионов слабых кислот и сильных анионов. [c.446]

    В едких щелочах и воде, идущих на приготовление электролита, не должно быть соединений, вступающих в электродные реакции. Из числа обычных примесей особенно нежелательны соединения железа и хлориды. Поэтому воду, которую берут для приготовления электролита, очищают от примесей так, чтобы ее электропроводность была бы не выше 10 См/м, а содержание сухого остатка не превышало 10 мг/л. Очистить воду до этого уровня можно на ионообменных смолах. Можно использовать и паровой конденсат, который в среднем имеет электропроводность 10- См/м. [c.10]

    Питательная вода для ЗИА подготавливается на установке химической подготовки, служащей для сбора парового конденсата с установок этиленового производства, обессоливания воды с ТЭЦ, химической очистки воды и конденсата на ионообменных смолах, удаления растворенного кислорода, приготовления и дозирования химических добавок. [c.151]

    Приведенные выше замечания применимы к системам, когда 5102 добавляется в виде раствора активного кремнезема, приготовленного, как правило, ионным обменом. Более быстрый рост частиц наблюдается в том случае, когда раствор силиката натрпя непосредственно прибавляется к основному золю , состоящему из зародышевых частиц, из которого непрерывно удаляются ионы натрия за счет использования ионообменной смолы в водородной форме, что будет рассмотрено ниже. В указанном примере кремнезем первоначально находился в системе в виде мономера и олигомеров. Следовательно, не требовалось затрат времени на процесс деполимеризации более высокомолекулярных поликремневых кислот, которые постоянно присутствуют, если кремнезем, вначале приготовляется в виде отдельного раствора активного кремнезема. [c.427]

    Очень разнообразно использование кремнеземов при приготовлении микропористых полимеров. Посредством включения кремнезема в мономер, применяемый для получения ионообменных смол, дополнительную пористость получают последующим растворением и удалением кремнезема путем воздействия разбавленной кислотой HF [578]. [c.817]

    В качестве адсорбентов для приготовления пластин для ТСХ используют силикагель, силикагель, модифицированный алкиль-ны Й1 и другими группами, оксид алюминия, целлюлозу и модифицированную целлюлозу, силикат магния, ионообменные смолы, полиамид, а также смеси этих и других сорбентов. [c.346]

    Для избирательного извлечения драгоценных металлов разработаны ионообменные смолы. Амборан, приготовленный компанией Ром энд Хаас , извлекает из растворов такие ионы металлов, как Аи +, Pt +, Pt +, Rh + и Ir +, удерживая их в нерастворимой в воде полимерной смоле. Затем металлы можно выделить путем медленного прокаливания металлсодержащих полимерных шариков. Емкость смол составляет 1—2 г металла на 1 г смолы. Процесс описывается уравнением [c.38]

    Непременным условием эффективности разделения шихты ФСД является обеспечение полного псевдоожюкения компонентов смеси восходящим потоком воды или раствора электролита. Параметрами, определяющими гидродинамику псевдоожижения, должны быть параметры наиболее крупной фракции наиболее тяжелого компонента смеси — катионита. В борьбе за максимальное использование товарных фракций ионообменных смол для приготовления смеси в ФСД принимаем в качестве расчетного значения диаметр частиц катионита =0.12 см. Тогда при значении истинной плотности частиц катионита — КУ-2 в К -форме р =1.25 г/см , средней пористости неподвижного слоя смол =0.4 и разделении их водой с вязкостью [л=0.01 г/см-сек. и плотностью р=1.0 г/см значение скорости псевдоожижения можно определить по формуле [ ] [c.170]

    В последнее время в качестве катализаторов начинают использовать ионообменные смолы. Пока нет сведений о специальной рецептуре для производства ионообменных смол-катализаторов. Общие же методы приготовления ионообменных смол приведены в не-которйх обзорах 28]. Наряду с синтетическими ионообменными смолами в качестве катализатора можно применять и сульфоуголь [29]. [c.186]

    Во всех случаях электролитического получения металлов высокой чистоты для приготовления растворов применяют дистиллированную воду, нередко очищаемую пропусканием через колонки, наполненные ионообменными смолами, так как конденсаторы перегонных аппаратов из меди, олова, никеля, серебра дают воду, содержащую ионы этих металлов. Наилучшие результаты при перегонке дает применение алюминия АВООО (99,9957о А1) или кварца. [c.571]


    МЕЛАМИН зHaNJ — бесцветные кристаллы, т. пл. 354 С малорастворим в воде, спирте. В большинстве органических растворителей нерастворим. Аминогруппы придают М. основные свойства. В промышленности М. получают из дн-циандиамида или из мочевины. М. применяют, главным образом, в производстве пластмасс, лаков, клеев, отличающихся высокой механической прочностью, малой электропроводностью, водо- и термостойкостью. В текстильной промышленности М. используется для изготовления не-мнущихся и безусадочных тканей в бумажной — для производства водонепроницаемой бумаги в деревообрабатывающей — для склеивания древесины, получения лаковых покрытий. Кроме того, М. применяется для приготовления ионообменных смол, дубильных веществ и др. [c.158]

    СТИРОЛ (фенилэтилен, винилбензол, этинилбензол, циннамен) СвН5СН=СН2— бесцветная подвижная жидкость со своеобразным сладковатым запахом, т. кип. 145,2 С, хорошо растворяется в органических растворителях и сам растворяет многие органические соединения, в том числе полистирол и другие полимеры. Получают С. главным образом дегидрированием этилбензола. С. очень реакционноспособен, легко полимеризуется, образуя твердую стекловидную массу желтоватого цвета. Почти весь С. расходуется на производство полистирола. Сульфированные сополимеры С. и ди-винилбензола идут на приготовление ионообменных смол. При хранении больших количеств С. полимеризация, происходящая при комнатной температуре, может происходить со взрывом. Поэтому к С. при хранении прибавляют стабилизаторы (антиоксиданты) гидрохинон, [c.239]

    Однако между этими способами существует много важных различий. В способе опережающего электролита используют обычную ионообменную смолу, а в способе отстающего электролита — особо приготовленную (типа ретардион). Способ отстающего электролита основан на обратимой ионообменной сорбции электролитов, в результате чего можно достичь хорошего отделения ионов от очень крупных органических молекул (рис. 34), тогда как в случае способа опережающего электролита такое разделение вызывается диффузией органических молекул в поры ионита, размеры которых становятся лимитирующим фактором. Если молекулярный вес органического компонента превысит некоторое критическое значение (500—1000), разделение может не произойти. [c.114]

    Неподвижная фаза. Способностью к ионному обмену обладают некоторые минеральные материалы. Среди них цеолиты (анальцит, фозажит, стильбит), глинистые материалы (каолинит, монтмориллонит, слюды, силикаты). Такой способностью обладают также синтетические неорганические иониты (иониты на основе циркония, оксида алюминия), а также специально приготовленные сульфированные угли. Нашедшие наибольшее практическое применение ионообменные смолы состоят как бы из двух частей матрицы (каркаса), не участвующей в ионном обмене, и ионогенных групп, структурно связанных с матрицей. Такой матрицей чаще всего является сополимер дивинилбензола и полистирола. Дивинилбензол как бы сшивает поперечными связями цепи полистирола, что приводит к образованию зерен полимера, пронизанных порами. [c.604]

    Синтез 0-триметилсилиловых эфиров проводят следующим образом [90]. Раствор, доведенный до pH 4 при помощи ионообменной смолы типа амберлит IR-45, концентрируют до небольшого объема. В круглодонную колбу емкостью 50 мл вносят 0,5 мл гидролизата, содержащего 10—15 мг углеводов, и 0,5 мл 0,2%-ного раствора эритрита, смесь перемешивают, выпаривают досуха н выдерживают на водяной бане 30 мин при 50° С под вакуумом. Остаток в колбе растворяют в сухом пиридине. К раствору добавляют 0,4 мл гексаметилдиси-лазана, 0,2 мл триметилхлорсилана и энергично встряхивают в течение 30 сек. Приготовленный раствор вводят в колонку хроматографа при помощи микрошприца. Для количественного определения строят стандартные графики для каждого сахара. Для этого хроматографируют смесь, содержащую исследуемый моносахарид и эритрит в различных соотношениях. Измеряют площади соответствующих пиков, отношения площадей пиков моносахарида и эритрита выражают в виде функций отношений соответствующих весовых количеств. [c.82]

    Фосфорная кислота Н3РО4 является важнейшим промежуточным продуктом в производстве концентрированных фосфорсодержащих удобрений. Кроме того, фосфорная кислота используется в производстве различных технических солей, разнообразных фосфо-рорганических продуктов, в том числе инсектицидов, полупроводников, активированного угля (сульфоуголь для удаления накипи и умягчения воды), ионообменных смол, а также для создания защитных покрытий на металлах. Очищенная, или так называемая пищевая, Н3РО4 используется в пищевой промышленности, приготовлении кормовых концентратов и фармацевтических препаратов. [c.421]

    Поскольку необходимая полнота регенерации ионообменных смол требует значительного избытка реагента сверх стехиометрически необходимого количества, в отработанных растворах содержатся большие количества неиспользованных кислоты и аммиака (или щелочи). Необходимость нейтрализации этого избытка реагентов приводит к повышению стоимости утилизируемых продуктов и во многих случаях делает утилизацию отработанных регенерационных растворов вообще экономически нецелесообразной. Выход из этого затруднения заключается в противоточном или миогопорционном режиме регенерации. При этом весь необходимый объем возможно более концентрированного регенерационного раствора делится на несколько порций (обычно три или четыре), которые фильтруют через ионообменный фильтр последовательно и принимают в раздельные сборники. На утилизацию отводят лишь ту порцию раствора, в которой соотношение концентрации вытесненного из смолы и регенерирующего иопов максимально, а, следовательно, минимальны затраты на нейтрализацию избыточного реагента. Все же остальные порции регенерационного раствора используются в новом цикле для регенерации ионита в порядке, соответствующем нарастанию в растворе избытка неиспользованного реагента. Поэтому свежий реагент расходуется только на приготовление одной порции раствора, которую используют для завершения регенерации фильтра. [c.229]

    Катализаторы готовят методом панесения растворенных солей металлов на носитель, главным образом на активную окись алюминия, пемзу, активированный уголь. В последнее время в качестве носителей предложены ионообменная смола макропористой структуры, полиэтилен, поликарбонат, полиэфиры, покрытые активированным углем или графитом. В качестве носителей для приготовления катализаторов на основе металлов Р1-грунпы используют керамическую массу, сформованную в виде блоков или сот с каналами для прохода газа [72—75]. [c.440]

    Хлористый цинк применяют самостоятельно или в смеси с фенолом или хроматом для дропитки шпал, для приготовления дезинфи-цируюш их и бальзамирующих жидкостей при пайке, для получения минеральных красок в производстве органических красителей хлористый цинк используют также в качестве водоотнимающего средства, катализатора в некоторых химических процессах (получение ионообменных смол, гидрокрекинг каменного угля и др.). [c.574]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Деминерализованная вода (Aqua demineralisata) получается путем обессоливания водопроводной воды с помощью специальных ионообменных смол. Деминерализованная вода может использоваться для мытья аптечной посуды и различных упаковок. (По Международной фармакопее, 2-е изд., 1969, с. 00, вода деминерализованная не должна использоваться для парентерального применения, но может применяться для приготовления всех жидких лекарственных форм, растворов, реактивов. В случае использования деминерализованной воды для приготовления глазных лекарств она должна быть простерилизована непосредственно перед приготовлением лекарства.) [c.155]

    Когда Вейл [1] в 1925 г. и Тредвелл и Виланд [2] в 1930 г. рассматривали проблему коллоидного кремнезема, золи кремнезема с содержанием более 10 % 5102 были редкостью, причем подобные золи не были устойчивы по отношению к процессу гелеобразования. В 1933 г. Гриссбах [3] в своем обзоре сообщил о том, что 10 %-ный золь, стабилизированный аммиаком, был приготовлен фирмой ИГ Фарбениндустри АГ. В 1941 г. Бёрд [4] запатентовал способ удаления щелочи из разбавленного раствора силиката натрия. Использовалась ионообменная смола в водородной форме. Для стабилизации кремнезема повторно добавлялось небольшое количество щелочи и проводилось концентрирование системы выпариванием воды при нагревании. Теперь мы знаем, что при подобных условиях частицы кремнезема могут вырастать до 5—10 нм. В 1945 г. Уайт [5] запатентовал способ вымывания солей из кремнеземного геля, приготовленного подкислением раствора силиката натрия. Гель пропитывали щелочным раствором и нагревали до такой степени, чтобы большая его часть пептизировала в золь. Обычно такими, способами получали золи с содержанием 15—20 % ЗЮг, по крайней мере временно стабилизированные против гелеобразо- [c.421]

    Айлер [32] разработал способ приготовления золя с содержанием 10 7о Si02 и размером частиц 3 нм. По этому способу предусматривалось добавлять к золю, размер частиц которого менее 3 нм, силикат натрия в таком количестве, чтобы ввести не бо лее 4 % ЗЮг и чтобы концентрация ионов натрия не превышала 0,4 н. Золь подвергали старению в течение 10 мин, затем пропускали через колонну, заполненную сильнокислотной ионообменной смолой в водородной форме, чтобы снова получить золь с pH 3,5, После этого повторяли весь процесс, поддерживая комнатную температуру. [c.429]

    Для получения золей с очень небольшим размером частиц Шеннон [98] добавлял силикат натрия к кислой суспензии, приготовленной из ионообменной смолы, до тех пор, пока концентрация кремнезема не достигала 8%. Затем извлеченный золь подщелачивался прибавлением NaOH и NH3 для того, чтобы на частицах Si02 оказались 1 % Na и 3 7о NH3. [c.452]

    При приготовлении кремневой кислоты пропусканием раствора силиката натрия с содержанием более 3—4 % Si02 через слой ионообменной смолы в водородной форме внутри пор используемой смолы образуется гель кремнезема. Это приводит не только к потере кремнезема и к необходимости проводить очпстку слоя ионита, но также вызывает раздробление гранул ионообменной смолы. По данным Гофмана [99] элюент крем- [c.452]

    Приготовление водной фазы. Водную фазу готовят но периодической схеме (рис. 15.2) в аппаратах из нержавеющей стали или гуммированных, снабженных перемешивающим устройством и змеевиком для обогрева. В аппараты подается умягченная вода, прошедшая специальную очистку на ионообменных смолах от солей железа и других примесей. Обычно умягченную воду подвергают деаэрации для удаления растворенного в ней кислорода, способного ингибировать полимеризацию. В аппарат 7 для приготовления водной фазы последовательно при перемешивании подаются растворы канифольного и жирнокислотного эмульгаторов, лейканола, ронгалита и три-натрийфосфата. После загрузки все компоненты перемешивают в течение 2 ч. [c.220]

    Трехгорлую колбу емкостью 500 мл, снабженную мешалкой (желательно с указателем числа оборотов), термометром, обратным холодильником и вводом для азота, повторно откачивают и заполняют азотом. В колбу вносят 250 мг поливинилового спирта (см. опыт 5-01) и растворяют при 50 °С в 150 мл воды, предварительно переманной в атмосфере азота. К полученному раствору при постепенном перемешивании добавляют свежеприготовленный раствор 0,25 г (1,03 ммоля) перекиси бензоила в 25 мл (0,22 ммоля) стирола и 2 мл (7 ммолей) дивинилбензола. В результате перемешивания смеси образуется эмульсия мелких капелек мономера в воде. Через реакционную смесь пропускают слабый ток азота и при постоянном перемешивании колбу нагревают на водяной бане до 90 °С. Через 1 ч примерно при 5%-ном превращении происходит образование i e-ля. Эмульсию перемешивают еще в течение 7 ч при 90 °С, затем колбу охлаждают до комнатной температуры. Перемешивание прекращают и отстоявшуюся жидкость декантируют. Гранулы полимера несколько раз промывают метанолом и в заключение выдерживают 2 ч в метаноле. Полимер фильтруют и сушат в течение ночи в вакуумном сушильном шкафу при 50 °С. Выход практически количественный. Полученный сшитый сополимер стирола с дивинилбензолом можно использовать для приготовления ионообменной смолы (см. опыты 5-11 и 5-13). [c.181]

    Патент на изготовление драгоценного опала был выдан в 1964 г. [8] австралийцам А. Гаскину и П. Дарре. Первая стадия процесса синтеза включала в себя приготовление шариков кремнезема требуемого размера. Раствор натриевого силиката деионизировался нагреванием с ионообменными смолами при температуре 100°С в течение от 30 до 100 ч. Этот процесс содействует осаждению коллоидного кремнезема, который затем образует шарики размеров, характерных для благородного опала. Более крупные шарики, которые могут сформироваться в это время, периодически удаляются путем перемешивания жидкости и использования центрифуги. Полученную суспензию выдерживают в высоком цилиндре в течение нескольких недель для осаждения частиц. После того как шарики распределятся по слоям и наиболее крупные частички опустятся на дно, с помощью пнпетки извлекают слой, содержащий шарики нужного диаметра, без нарушения выше- и нижележащих слоев. [c.118]


Смотреть страницы где упоминается термин Смолы ионообменные приготовление: [c.251]    [c.338]    [c.146]    [c.520]    [c.176]    [c.229]    [c.187]    [c.428]    [c.460]    [c.244]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.588 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы

Приготовление смолы



© 2025 chem21.info Реклама на сайте