Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамический потенциал фазах малого размера

    Особенно широкое распространение получил хлоридсеребряный электрод, который имеет наиболее воспроизводимые после водородного электрода значения потенциала. Поэтому он часто используется в качестве внутреннего вспомогательного электрода при изготовлении других электродов, например стеклянного. Его можно применять для измерений как в водных, так и в неводных растворах, в потоке жидкости, изготовить очень малых размеров. Недостатком электрода является зависимость термодинамических характеристик от физических свойств твердой фазы, таких как механическая деформация, кристаллическая структура, способ приготовления и др. До сих пор нет метода изготовления идеального хлоридсеребряного электрода. На практике применяют три основных метода электролитический, термический и термоэлектрический. [c.123]


    Несмотря на то что влияние кривизны поверхности на термодинамические свойства может быть незначительным, роль этого фактора все-таки весьма важна. Рассмотрим случай, когда капли или маленькие твердые включения, состоящие из чистых веществ, находятся во второй фазе больших размеров. Если вначале все включения имеют одинаковый размер, то они могут находиться в равновесии, но это равновесие нестабильно. В самом деле, если включение уменьшается (посредством переноса бесконечно малого количества массы во вторую большую фазу), то химический потенциал чистого вещества во включении будет увелич ваться, что в свою очередь приведет к дальнейшему уменьшению размера частицы. [c.336]

    Коллоидные частицы имеют весьма малые размеры и поэтому участвуют в броуновском движении, в то же время они обладают заметной скоростью диффузии (10 —10 см /с), что способствует выравниванию концентрации частиц по объему. Коллоидные системы обладают избытком свободной энергии за счет чрезвычайно развитой удельной поверхности частиц. Термодинамически такая система должна самопроизвольно стремиться к состоянию, в котором ее свободная энергия была бы минимальна, т. е. к самопроизвольному умень-. шению поверхности, а следовательно, и к укрупнению частиц. Однако на практике коллоидные системы обладают весьма высокой агрегативной устойчивостью. Такая устойчивость при малых размерах частиц способствует седиментационной устойчивости (постоянству концентрации примесей по всему объему воды), так как гравитационная сила, вызывающая седиментацию, нивелируется силами диффузии. Агрегативная устойчивость коллоидной системы объясняется существованием двойного электрического слоя ионов и скачка потенциала на границе раздела фаз. [c.30]

    Гиббс предполагал, что переходный слой между двумя фазами, в котором происходит постепенное изменение свойств, имеет очень малую толщину. Поскольку в то время не было никаких данных о размерах молекул и силах, действующих между ними, Гиббс не смог оценить, какова эта толщина, и, таким образом, определить размер фаз, к которому все еще можно применять представления о поверхностной фазе с независящими от размеров параметрами. Однако он, по-видимому, допускал, что такая граница существует. Говоря, например, об устойчивости пен [4], он совершенно определенно утверждал, что очень тонкие слои могут иметь особые свойства, которые способны приводить к их неустойчивости и разрушению. Более четко идея об изменении термодинамических свойств (химического потенциала) в тонком слое была изложена Поляни в 1914 г. Согласно Поляни, в результате взаимодействия молекул тонкого полимолекулярного слоя с подложкой, поверх которой [c.92]


    При учете поверхностной свободной энергии зародышей по отношению к среде, в которой они взвешены, было расширено понятие о термодинамическом равновесии двух фаз таким образом, чтобы зародыш данных размеров и формы находился в равновесии со средой при метастабильном состоянии последней, то есть при неустойчивости ее по отношению к уже сформировавшейся твердой фазе. В этом случае раствор, пересыщенный по отношению к кристаллу бесконечно большого размера, может оказаться ненасыщенным по отношению к кристаллу достаточно малого размера. Если последний не слишком мал по сравнению с размерами отдельных молекул, то поверхностную энергию кристалла, можно представить в виде произведения его поверхности (принимается, что кристалл имеет форму шара) на обычное поверхностное натянсение ст, соответствующее Полный термодинамический потенциал всей системы раствор А — кристалл В оказывается при этом равным [c.18]

    Ввеяеиие коицентрации частиц дисперсной фазы как са1мостоятельной переменной сближает описание термодинамических свойств коллоидных систем и молекулярных (истинных) растворов, т. е. микрогетерогенных и гомогенных систем. Промежуточное положение коллоидно-дисперсных систем между типичными гетерогенными системами, включающими макрофазы, и гомогенными растворами приводит к тому, что по мере роста дисперсности частиц дисперсной фазы становятся все более существенными характерные особенности молекулярно-дисперсного состояния вещества и, для самых малых частиц, постепенно ослабевает роль свойств дисперсных систем, роднящих их с макрофазами. Так, грубодисперсным системам свойственно наличие хорошо сформированной поверхности раздела фаз, к которой может быть отнесена поверхностная энергия частицы в таких системах содержат достаточно большое число молекул, чтобы можно было говорить об их статистических (усредненных) свойствах. Вместе с тем уже в таких системах возникают характерные отличия свойств частиц от макроскопических фаз химический потенциал вещества дисперсной фазы, как было показано в 3 гл. 1, начинает зависеть от размера частиц. [c.117]


Смотреть страницы где упоминается термин Термодинамический потенциал фазах малого размера: [c.10]    [c.88]    [c.184]   
Кинетика образования новой фазы (1986) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал термодинамические

Термодинамический потенциа



© 2025 chem21.info Реклама на сайте