Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы поверхностная энергия

    Важнейшей термодинамической величиной для энергетической характеристики взаимодействий с участием поверхностей или границ раздела является поверхностная энергия о или межфазная энергия у. Поверхностная энергия (поверхностная энтальпия) кристалла определяется как свободная энергия (свободная энтальпия), которую необходимо затратить для создания поверхности. Так как частицы на поверхности кристалла обладают большей потенциальной энергией, чем атомы или ионы внутри кристалла, поверхностную энергию можно рассматривать как избыток энергии на единицу поверхности (обычно на [c.251]


    Поверхностный слой обладает избытком энергии по сравнению с энергией частиц внутри кристалла — поверхностной энергией. [c.11]

    Формула (5.24) может быть применена и для описания анизотропных кристаллических зародышей параметр г в этом случае будет обозначать некоторый характеристический линейный размер кристалла. Поверхностную энергию а рассчитывают по формуле а = (к,а, ), где суммирование ведут по граням кристалла  [c.188]

    Перенос массы и энергии через границу раздела фаз в направлении 1- 2 приводит к изменению поверхностной энергии кристалла (дуги 17, 18). Изменение поверхностной энергии кристалла (в частности, неравномерности поверхностного натяжения А,,) может привести к изменению формы кристалла, изменению границы раздела фаз (дуги 19), изменению его поверхности. [c.8]

    Первая работа, которая впоследствии послужила рождению физико-химической механики, относится к 1928 г. и связана с адсорбционным понижением прочности твердых тел. П. А. Ребиндер установил, что раскалывание небольших кристаллов кальцита и каменной соли облегчается при смачивании их различными жидкостями, в ряде случаев с добавками поверхностно-активных веществ. В основе этого явления лежит понижение свободной поверхностной энергии, т. е. работы образования новых поверхностей — плоскостей спайности кристалла, возникающих при расклинивании его в данной среде. [c.7]

    Херринг [8] обратил внимание на важность сопоставления для крупных кристаллов поверхностных энергий соседних форм, даже если ни одна из последних не совпадает с гранями минимальной поверхностной энергии на диаграмме Вульфа. Херринг, проанализировавший диаграмму Вульфа для подобных соседних конфигураций, пришел к следующим важным выводам  [c.102]

    Рассмотрим теперь адсорбционное (в отсутствие коррозии или растворения) влияние среды и ПАВ на механические свойства компактного материала — моно- или поликристаллического либо аморфного твердого тела. Это явление было открыто П. А. Ребиндером на кристаллах кальцита (1928 г.) и получило название эффекта Ребиндера. Очень характерно его проявление на ряде пластичных металлов. Так, будучи весьма пластичными по своей природе, монокристаллы цинка под действием микронной ртутной пленки или же массивные цинковые пластины при нанесении капли жидкого галлия или ртути хрупко ломаются уже при очень малых нагрузках (рис. 6). По Ребиндеру, общее термодинамическое объяснение таких явлений состоит в резком понижении поверхностной энергии о и тем самым работы разрушения вследствие адсорбции из окружающей среды (или контакта с родственной жидкой фазой). Одной из наиболее универсальных и вместе с тем простых моделей, связывающих прочность материала Рс с величиной ст, служит схема Гриффитса, являющаяся по сути приложением теории зародышеобразования к решению вопроса об устойчивости трещины и устанавливающая пропорциональность Рс ст . [c.312]


    Но для большинства минералов поверхностный барьер мало отличается от энергии активации движения дислокации сквозь решетку, равной энергии активации образования перегиба на линии дислокации, если сопротивление оказывает главным образом сила Пайерлса. Например, для оливина обе величины близки к 200 кДж/моль. Поэтому не удивительно, что для ионных и ионно-ковалентных кристаллов, в которых сила Пайерлса велика, адсорбционное пластифицирование проявляется лишь при действии сред, обладающих достаточно большой поверхностной активностью. Так, вода, понижающая поверхностную энергию фторида лития на 30%, а хлорида натрия — на 75%, практически не влияет на движение дислокаций в первом случае, но вызывает ярко выраженный эффект (увеличе- [c.88]

    В кристаллизующихся полимерах, находящихся при температуре ниже точки плавления, вторичные структуры представлены лентами и лепестками . Наиболее совершенной структурой полимера является единичный кристалл, обладающий минимальной поверхностной энергией кристаллической фазы. Менее совершенными в этом отношении являются сферолитные структуры, из которых могут быть построены ленты и лепестки . [c.64]

    Как упоминалось выше, величина поверхностной энергии на гранях зависит от кристаллической системы и параметров кристаллической решетки. Согласно имеющимся расчетам для кристаллов кубической системы наименьшей [c.94]

    Здесь <71 —внешний поток тепла, при отсутствии лучистой передачи тепла можно принять закон теплопроводности внутри несущей фазы в виде ql = —X VT , Я,,—коэффициент теплопроводности материала фазы 1. По аналогии с (1.36) введем выражение для изменения поверхностной энергии кристаллов размера (объема) г за счет перехода их из группы в группу при росте или растворении [c.23]

    Полная энергия любого кристалла кварца (или его обломка) представляет сумму внутренней энергии, необходимой для образования атомной решетки, и поверхностной энергии, затрачиваемой на удержание частиц поверхностного слоя в равновесии. При смачивании зерен среды водой выделяется избыток свободной энергии, необходимой для создания поверхностного слоя на границе кварц—вода. Так если 111 — полная энергия кристалла кварца с площадью поверхности 5, а — полная энергия второй фазы (воды), то полная энергия всей системы и = и] + и2 + о5. [c.208]

    Монокристаллическое состояние веществ в природе встречается довольно редко. Сейчас разработаны методы получения монокристаллов многих веществ, особенно металлов и оксидов. Их строение отличается дальним порядком, заключающимся в строго определенном расположении атомов или молекул по всему монокристаллу. Регулярное строение часто обусловливает наличие в кристаллах плоскостей спайности (между гранями с наименьшей поверхностной энергией), в которых действуют значительно меньшие [c.382]

    В условиях аналитического осаждения формирование осадка происходит быстро и поэтому кристаллы образуются разных размеров и несовершенные по форме. Немалый вклад в улучшение структуры кристаллических осадков вносит старение. Под старением понимают все необратимые структурные изменения, которые происходят в осадке при настаивании его под маточньпиг раствором. При атом уменьшается общая поверхность осадка за счет укрупнения кристаллов и совершенствуется форма кристаллов. Первое связано с тем, что растворимость кристаллов зависит от их размера. Мелкие кристаллы, обладая большей поверхностной активностью, имеют большую, чем крупные кристаллы, растворимость. При настаивании осадка мелкие кристаллы постепенно растворяются, раствор становится пересыщенным по отношению к крупным кристаллам и растворенное вещество осаждается на них, увеличивая их размер. Совершенствование формы кристаллов связано с непрерывным процессом обмена ионов поверхности кристалла с ионами раствора. Покинув несовершенное (с большой поверхностной энергией) место кристалла, ион переходит в раствор, а затем переходит в твердую фазу и занимает на поверхности кристалла место с меньшей энергией. Поэтому настаивание кристаллических осадков под маточным раствором широко используется в гравиметрии для получения однородных по цисперсности крупнокристаллических осадков. [c.14]

    По оценкам энергии кристаллических решеток различных соединений можно судить об их свойствах (растворимости, температуре плавления, реакционной способности — гидролизе, изоморфизме, скоростях выветривания и синтеза) и механических характеристиках (измельчаемости, абразивности и др.). Считается также, что существует прямая зависимость между энергией связи в кристаллах и поверхностной энергией. [c.13]


    Из-за неровностей и трещин, имеющихся на гранях, ребрах и углах кристаллов, их поверхностная свободная энергия распределяется неравномерно. Присоединение молекул из раствора при росте кристаллов происходит прежде всего по углам и ребрам, на которых поверхностная энергия максимальна. При росте граней кристаллов исчезают те из них, которые имеют большую скорость роста, т. е. обладают повышенной энергией. В случае регенерации деформированных кристаллов по той же причине, прежде всего рост начинается с острых вершин и ребер поврежденных мест. При быстрой кристаллизации из растворов часто образуются иглы или дендриты, что объясняется быстрым ростом мест с наибольшей энергией. [c.107]

    Рост кристаллов. Кристалл растет на сформировавшемся, достигшем критического размера зародыше. Он обладает большой поверхностной энергией, за счет которой адсорбируются все новые частицы растворенного вещества. Адсорбировать частицы из раствора могут также твердые частицы другого обладающего соответствующей поверхностной энергией вещества. Они становятся, таким образом, центрами кристаллизации. В последнем случае процесс носит название кристаллизации на подложке. [c.635]

    Рост кристалла на катоде в первую очередь идет на гранях с наименьшей поверхностной энергией  [c.94]

    Ускорение ползучести в условиях действия адсорбционноактивных сред отмечалось неоднократно. В работе [261] рассматривается один из возможных механизмов влияния снижения свободной поверхностной энергии на некоторые механические характеристики твердых тел, в том числе и на скорость ползучести. Сущность механизма заключается в том, что свободная поверхность, наряду с межзеренной, рассматривается как основной источник точечных дефектов (вакансий) в объеме поликристалла. Мощность этого источника зависит от равновесной концентрации С - изломов на поверхностных ступенях атомарной высоты. Элементарный акт образования вакансии на поверхности заключается в переходе атома твердого тела на излом атомарной ступени. Следовательно, поток вакансий с поверхности кристалла в его объем должен возрастать при уменьшении поверхностной энергии о в соответствии с выражением 1п (—с1кТ). [c.90]

    При образовании осадка происходит разделение фаз, поэтому этот процесс подчиняется законам, аналогичным законам конденсации малых капель из парообразной фазы или появлению пузырьков паров при кипении жидкости. Во всех случаях первично образующиеся частицы новой фазы очень малы (<С1 нм), а отношение их поверхности к объему и, следовательно, свободная поверхностная энергия велики, т, е. химический потенциал, а также и активность высокодисперсной фазы выше, чем твердой фазы. Иначе говоря, константа равновесия фазовых переходов зависит от степени развития поверхности фаз. Для процесса образования осадка это означает чем меньше радиус образующихся зародышей кристаллов, тем больше произведение растворимости, и следовательно растворимость. Растворимость Lr зародышей и их радиус г связаны между собой следующим соотношением (по аналогии с уравнением для давления паров малых капель)  [c.198]

    Поверхностная энергия твердого тела, в особенности кристаллов, зависит от расположения частиц под любой из граней, от способа упаковки молекул. Поэтому даже для одного кристалла или зерна условия смачиваемости по различным поверз ностям неоднозначны. Следовательно, даже для идеального однородного  [c.207]

    Совсем по-иному влияют на процесс кристаллизации растворимые примеси. Дело в том, что зародыш кристалла при своем образовании стремится оттеснить инородные примесные молекулы, что ведет к обогащению этими молекулами слоя расплава, окружающего границы зародыша. По этой причине участие молекул основного вещества в росте зародыша становится затруднительным и для достижения зародышем критического размера уже требуется большее переохлаждение. В присутствии примеси может изменяться (как правило, уменьшается) и скорость роста кристалла. Это, по-видимому, обусловлено адсорбцией примесных молекул на поверхности кристалла. Если адсорбция происходит на активных местах роста, то такое локальное отравление поверхности кристалла тормозит образование кристаллического слоя и рост кристалла замедляется по сравнению с его ростом из чистого расплава. Но, с другой стороны, адсорбция примесных молекул может приводить к уменьшению поверхностной энергии кристалла. Это, в свою очередь, связано с повышением шероховатости поверхности, [c.109]

    Эти же цепи при определенных условиях можно использовать для установления температуры аллотропического превращения. Если повысить температуру до значения, при котором а-модификация переходит в р-модификацию, то оба -)лектрода окажутся в одной и той же модификации и э.д.с. системы будет равна (или близка) нулю. Э.д.с. системы может отличаться от нуля потому, что свободная энергия двух электродов, изготовленных из металла одной и той же модификации, не обязательно должна быть одинаковой. Это наблюдается, например, в том случае, когда электроды различаются по размерам образующих их зерен или находятся под различным внутренним напряжением. Электрод, образованный более мелкими кристаллами или находящийся под избыточным механическим напряжением, играет роль отрицательного полюса элемента. Он растворяется, а на другом электроде происходит осаждение металла. Более того, разность потенциалов может возникать даже, если в качестве электродов использоЕ1аны разные грани монокристалла одного и того же металла, поскольку они обладают разным запасом свободной энергии. Электрод, образованный гранью с по-выщенным запасом поверхностной энергии, будет растворяться, а ионы металла — выделяться на грани с меньшей поверхностной энергией. Следует, однако, подчеркнуть, что во многих из этих случаев разность потенциалов, существующая между двумя различными образцами одного и того же металла, не должна отождествляться с обратимой э.д.с., поскольку она отвечает не равновесному, а стационарному состоянию элект[)0Д0в. Разности потенциалов, возникающие в рассмотренных случая , обычно малы, тем не менее в некоторых электрохимических процессах, в частности в процессах коррозии, их необходимо принимать во внимание. [c.195]

    Из соотношения (П1.55) следует, что при постоянных параметрах процесса противоточной кристаллизации стационарное распределение примеси в твердой (аналогично и в жидкой) фазе по высоте колонны должно иметь экспоненциальный характер, что наблюдается и в других противоточных методах глубокой очистки [см. уравнение (11.66)]. Однако, как известно, в реальных условиях при перемещении твердой фазы в колонном аппарате она подвергается частичной перекристаллизации, вследствие чего размер составляющих ее кристаллов изменяется. Дело в том, что при своем образовании в зоне кристаллизации они, по существу, имеют уже неодинаковый размер вследствие неоднородности температуры переохлажденного расплава у охлаждаемой поверхности. Выходящая из зоны кристаллизации такая мелкодисперсная кристаллическая масса обладает избыточной поверхностной энергией. Следовательно, рассматриваемая система кристаллы — расплав при этом является термодинамически неустойчивой, что обусловливает протекание в ней прежде всего процессов, направленных в сторону уменьшения поверхностной энергии твердой фазы. Это будет характеризоваться увеличением размера частиц твердой фазы, т. е. снижением удельной поверхности кристаллов в колонне. В результате кристаллы при своем движении по колонне должны или укрупняться или число их должно уменьшаться. Из имеющихся в литературе экспериментальных данных следует, что в кристаллизационной колонне протекают оба эти явления происходит плавление мелких и одновременно рост более крупных кристаллов, т. е. в процессе противоточной кристаллизации происходит увеличение среднего размера движущихся кристаллов. [c.140]

    В 1926 г. X. С. Тейлор предложил гипотезу активных центров, согласно которой степень ненасыщенности связей атома в поверхностном слое зависит от его положения в кристаллической решетке. По Тейлору, атомы поверхности обладают тем более повышенной способностью к адсорбции и катализу, чем менее связаны с другими атомами катализатора (на ребре, углу кристалла, на участке с большой кривизной и т. п.). Из этого следует, что поверхностная энергия твердого тела может меняться от точки к точке. Однако такое объяснение сложной структуры поверхности катализатора и специфичности его каталитического действия далеко от истины. [c.182]

    Из уравнения (VI.5) следует, что температуры плавления реальных кристаллов всегда меньше идеальной равновесной температуры, и тем меньше, чем больше их удельная поверхность и удельная поверхностная энергия, чем больше концентрация в них объемных дефектов. [c.186]

    Кристалл, находящийся в равн звесии с окружающей средой, принимает форму, отвечающую минимуму поверхностной энергии [c.335]

    На состояние твердых поверхностей оказывает существенное влияние ряд факторов. Поскольку поверхностные атомы твердых тел относительно неподвижны, их поверхностная энергия в большой степенп зависит от предыстории твердого тела. Например, поверхностная энергия чистого скола кристалла, как правило, ниже энергии шлифованной поверхности кристалла и энергии поверхности, подвергнутой термообработке. Заметное влияние на свойства поверхности оказывает полировка под ее воздействием образуется относительно глубокий мелкокристаллический (псевдоаморфный) слой, напоминающий пленку вязкой жидкости, — он затекает в разного рода неровности (трещины, царапины). [c.180]

    Для удаления из кокса гетероэлементов требуются более жесткие условия его обработки. Так, температура обессеривания сер- 1истых коксов находится в пределах 1400—1600 °С. Коксы с высокомолекулярной упорядоченной структурой и специального качества получают с помощью графитации при 2200—2800 °С — превращением кристаллитов двумерной упорядоченности в кристаллы трехмерной упорядоченности (графит). Поверхностную энергию и другие свойства сажи регулируют в процессе ее получения изменением температуры (1200—1500°С) и длительности прокаливания. [c.187]

    В физико-химических процессах термолиза фо). 1Мнруютс,1 ССЕ с ядрами из пузырька и комплекса, а на поздних стадиях, особенно при использовании в качестве сырья тяжелых остатков,— кристалла и поры. Соединения, иопадающне нз дисперси онной среды (объема) в адсорбционно-сольватный слой ССЕ (поверхностный слой), находятся в нем в течение определенного времени и подвергаются суммарному действию температурного и адсорбционного полей, приводящих к деструкции соединени при более мягких условиях, чем в объеме дисперсионной среды, в результате снижения энергии активации процесса. Продукты деструкции, имея меньшую молекулярную массу, покидают адсорбционно-сольватный слой, рекомбинируясь в объеме н их место поступают новые соединения из дисперсионной среды, и процесс повторяется. Влияя на соотношение объемной и поверхностной энергий в НДС, можно регулировать энергию активации процесса и таким образом влиять иа ход термических процессов. [c.199]

    Действие модификаторов кристаллов основано на изменении формы и поверхностной энергии кристаллов парафина. В результате снижается склонность кристаллов к взаимному объединению или присоединению к стенкам трубы. Кроме того, размеры кристаллов остаются настолько небольшими, что снижается вероятность их осаждения и слипания. В случае же охлаждения нефти до температуры ниже те [пературы помутнения парафин осаждается не в виде игольчаты < кристаллов, приводящих впоследствии к резкому росту вязкости нефти, а в виде небольших округленных частиц. По этой причир[е модификаторы кристаллов известны под названиями депрессантов потери текучести, или реологических присадок. [c.193]

    В общем случае в отношении поверхностно-активных веществ наиболее вероятным представляется сорбциошю-десорбционный механизм действия модификаторов структуры, согласно которому действие поверхностно-активных молекул сводится к их сорбции на гранях зародившегося крис ал а. Сорбированные молекулы ПАВ уменьшают удельную поверхностную энергию граней кристалла, оказывающую прямое действие на скорость роста кристалла, соответственно ее понижают и одновреме]ню препятствуют дальнейшему осаждению вещества из раствора. [c.243]

    При нал1ичии1 а кристалле тр.аней с различными значениями х, двумерные зародыши с большей веро ятностью будут образовываться на лранял и участках с меньшей поверхностной энергией. [c.92]

    На рис. 52 охем1атически показаны относительные значения поверхностной энергии на граня,х кристалла. Восстана вливаемые атомы строят решетку кри - [c.94]

    Адсорбция поверхностно активных веществ на поликристаллических металлических электродах находится в зависимости от поверхностной энергии на отдельных гранях кристаллов и поверхностной энергии на ребрах и вершинах кристаллов. По мнению Лангмьюра, каждый поверхностный атом металла служит адсорбционным центром, способным поверхностной энергией связать ион, атом или молекулу адсорбируемого вещества. [c.103]

    Интересно, что под влиянием специальных добавок может по-разному меняться скорость роста отдельных граней кристалликоа. Так, при введении метилового фиолетового в процессе получения золя иодида серебра коренным образом меняется форма кристалликов Agi. Это объясняется, очевидно, тем, что молекулы метилового фиолетового адсорбируются преимущественно на определенных гранях кристаллика (на гранях с наибольшей поверхностной энергией), что и тормозит рост кристалла в направлении, перпен- [c.228]

    Другое возражение связано с вопросом гомогенного возникновения зародышей кристаллов алмаза из раствора-расплава. Ввиду того, что алмаз обладает огромной поверхностной энергией (большей, чем у всех других веществ), работа образования зародыша кристалла для него будет аномально велика. Строгие расчеты показывают, что вероятность флуктуативного возникновения алмазного зародыша ничтожно мала. Еще один экспериментальный факт показывает, что предложенный механизм кристаллизации не может быть общим. В подавляющем большинстве случаев синтез алмазов происходит при такой температуре, когда активирующее вещество (металл или его эвтектическая смесь с углеродом или соответствующим карбидом металла) начинает плавиться. Однако имеются четко поставленные опыты, в которых кристаллизация алмаза происходила, а активирующее вещество (например, тантал) было в твердом состоянии. [c.136]

    Еще одно важное физико-химическое явление, связанное с существованием избыточной поверхностной энергии,— это образование пересыщенных систем. При закипании жидкости образуются пузырьки (зародыши) газовой фазы в толще жидкости. Конденсация пара начинается с образования капель жидкости — зародышей жидкой фазы. Чтобы началось замерзание жидкости или выпадение твердого вещества из его насыщенного раствора, должны появиться кристаллы замерзающей жидкости или растворенного вещества— зародыши твердой фазы. Первоначальный размер зародышей новой фазы очень мал, следовательно, они имеют высокую по отношению к их объему поверхность и тем самым значительную избыточную поверхностную энергию. Это затрудняет их образование. Поэтому в определенных условиях пар может быть охлажден до температуры, существенно более низкой, чем температура конденсации, т. е. может образоваться пересыщенный пар. Аналогично, жидкость в ряде случаев может быть нагрета выше температуры кипения, т. е. может быть получена перегретая жидкость. Точно так же возмол сно охлаждение жидкости ниже температуры замерзания, т. е. образование переохлажденной жидкости. При охлаждении раствора твердого вещества, растворимость которого падает с уменьшением температуры, можно без выпадения осадка растворенного вещества понизить температуру ниже гой, при которой раствор становится насьшхенным, т. е. получить пересы-щенный раствор. [c.310]


Смотреть страницы где упоминается термин Кристаллы поверхностная энергия: [c.39]    [c.281]    [c.132]    [c.87]    [c.87]    [c.150]    [c.40]    [c.241]    [c.95]    [c.43]    [c.226]    [c.195]    [c.17]   
Физика полимеров (1990) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностная энергия



© 2025 chem21.info Реклама на сайте