Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные частицы укрупнение

    Процесс укрупнения (слипания) коллоидных частиц, приводящий к образованию осадка, называют коагуляцией. Явление осаждения частиц дисперсной фазы под действием силы тяжести называют седиментацией. Подбором соответствующего злектролита осевшие частицы можно снова зарядить и перевести в коллоидный раствор. Переход осадка в золь называется пептизацией. [c.148]


    Различают периоды скрытой коагуляции и коагуляции явной. Вначале происходит укрупнение частиц, невидимое невооруженным глазом (скрытая коагуляция), затем размер частиц достигает предела видимости, после чего скрытая коагуляция переходит в явную. Коагулирующая сила электролита существенно зависит от величины заряда ионов, несущих заряд одноименный с противоионами. Чем больше их заряд, тем при меньшей их концентрации начинается коагуляция. Различие их во влиянии на коагуляцию чрезвычайно велико. Для однозарядных ионов порог коагуляции в зависимости от природы золя, степени его дисперсности и концентрации составляет 25—100 ммоль/л, для двухзарядных ионов 0,5—2,0 ммоль/л и для трехзарядных 0,01—0,1 ммоль/л. Эта закономерность получила название правила Шульце—Гарди. Порог коагуляции не зависит от природы ионов, вызывающих коагуляцию, за исключением случаев, когда эти ионы специфически адсорбируются на поверхности коллоидной частицы. Величина заряда ионов, несущих заряд, одноименный с зарядом ядра, на пороге коагуляции практически не оказывается. Отметим также, что анионы оказывают большее коагулирующее действие, чем катионы. [c.419]

    Кинетическая, или седиментационная устойчивость определяет способность системы противостоять оседанию или всплыванию частиц дисперсной фазы в определенных условиях под действием силы тяжести. Седиментационная устойчивость является функцией размеров частиц дисперсной фазы и понижается с укрупнением коллоидных частиц. [c.22]

    Суспензии получают диспергированием твердых тел в жидкостях, смешиванием порошков с жидкостями, укрупнением коллоидных частиц в результате коагуляции или конденсационного роста. [c.146]

    Процесс укрупнения коллоидных частиц в результате их слипания, приводящий в конечном итоге к выпадению вещества в осадок или к образованию студней, называется коагуляцией. Коагуляцию можно вызвать повышением температуры, добавлением электролитов, прибавлением к золю другого золя с противоположным по знаку зарядом частиц (взаимная коагуляция). Для начала явной (т. е. различимой глазом) коагуляции необходимо прибавить к золю некоторое минимальное количество электролита с, называемое порогом коагуляции. При концентрациях электролита, меньших порога, коагуляция протекает в скрытом состоянии. Коагуляцию вызывают те из ионов прибавляемого электролита, заряд которых противоположен по знаку заряду коллоидных частиц. Величина, обратная порогу коагуляции, называется коагулирующей способностью иона Р  [c.167]

    Температура. В большинстве случаев осаждение лучше вести из горячих растворов . При аморфных осадках нагревание способствует коагуляции коллоидных частиц и укрупнению зерна осадка. При кристаллических осадках нагревание обычно увеличивает растворимость, и поэтому возникает меньше новых центров кристаллизации и улучшаются условия для роста отдельных кристаллов. [c.79]


    Процесс укрупнения коллоидных частиц в результате их слипания под действием межмолекулярных сил притяжения называют коагуляцией. [c.199]

    Разрушение подобной дисперсной системы может произойти при изменении внешних условий, например при нагревании, замораживании, действии электромагнитных полей, жестких лучей, механического и химического воздействия. Эти изменения приводят к укрупнению частиц. Процесс укрупнения коллоидных частиц, приводящий к уменьшению степени дисперсности диспергированного вещества, называется коагуляцией. [c.85]

    Если каким-либо путем заряд коллоидных частиц уменьшить или полностью уничтожить, то диффузный слой разрушается, устойчивость коллоидной системы понижается, что приводит к слипанию и укрупнению частиц. Процесс укрупнения (слипания) коллоидных частиц, приводящий к образованию осадка, называется коагуляцией. [c.420]

    Если каким-либо путем заряд коллоидных частиц уменьшить или полностью уничтожить, то диффузный слой разрушается тогда частицы получают возможность слипания и укрупнения, что приведет к понижению устойчивости коллоидной системы. [c.148]

    Коллоидные частицы всегда имеют одноименный заряд, возникающий в результате избирательной адсорбции одного из ионов электролита, присутствующего в системе. Наличие у частиц электрического заряда одного и того же знака обусловливает их взаимное отталкивание и препятствует сближению на такие расстояния, на которых могут действовать достаточно большие силы сцепления. Кроме даго, наличие на частицах сольватной оболочки из молекул дисперсионной среды также препятствует сближению частиц до расстояний, на которых начинают превалировать силы притяжения (см. гл. IV и VI). Однако пока в системе не началась агрегация или в результате агрегации произошло лишь незначительное укрупнение частиц, - система сохраняет кинетическую устойчивость, а частицы,-находясь в тепловом движении, остаются во взвешенном состоянии и не оседают на дно сосуда. [c.13]

    Таким образом, коллоидные системы, будучи термодинамически неравновесными и, следовательно, неустойчивыми, в то же время кинетически устойчивы. Значительное укрупнение коллоидных частиц приводит к потере кинетической устойчивости. Это равносильно разрушению коллоидной системы она превращается в качественно отличную грубодисперсную систему. [c.13]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции и коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное. натяжение а и площадь S поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в колЛоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно сделать вывод о том, что важный фактор получения устойчивых коллоидных систем — уменьшение поверхностной энергии за счет адсорбции поверхностноактивных веществ на коллоидных частицах. [c.55]

    Учитывая, что коллоидные растворы занимают по размерам своих частиц промежуточное положение между грубодисперсными и молекулярно-дисперсными системами, для получения коллоидных растворов могут быть использованы две группы методов раздробление — диспергирование более крупных частиц до желаемой степени дисперсности, отвечающей величине коллоидных частиц, и укрупнение — объединение в агрегаты молекул или ионов до частиц, приближающихся по размерам к частицам коллоидных систем. [c.114]

    Пептизация может происходить вследствие удаления из раствора коагулирующих ионов, вызывающих укрупнение части, или адсорбции пептизатора, сопровождающейся образованием двойного электрического слоя и возникновением сольватной оболочки на коллоидных частицах. Во всех случаях частицы разобщаются между собой и вследствие теплового движения распределяются по всему объему дисперсионной среды. [c.116]

    Коллоидные растворы (или как их иногда называют золи ) занимают по размерам частиц промежуточное положение между грубодисперсными системами (суспензиями) и истинными растворами. Образование коллоидных растворов и коллоидных частиц происходит в качестве промежуточной стадии в процессах осаждения и растворения, особенно если они вызваны химическими реакциями. Процесс укрупнения коллоидных частиц, приводящий к осаждению вещества, называют коагуляцией. Процесс перехода осадка в коллоидный раствор (противоположный коагуляции) называется пептизацией. [c.166]

    Наличие одноименного заряда у всех гранул данного коллоидного раствора (золя) является важным фактором его устойчивости. Заряд препятствует слипанию и укрупнению коллоидных частиц. [c.223]

    Коагуляция. Заряженные коллоидные частицы можно специальными приемами соединить (свернуть) в более крупные агрегаты. Процесс соединения коллоидных частиц, представляющий собой укрупнение частиц золя, называют коагуляцией. [c.230]


    Для удаления коллоидных частиц необходимо их укрупнение, что достигается методом коагуляции, описанным в гл. 9. [c.129]

    Как указано в гл. III, для очистки радиоактивно-за-грязненных вод применяются осадительные процессы, связанные большей частью с образованием коллоидных осадков и их последующей коагуляцией (размеры частиц в коллоидных растворах 0,001—0,1 мкм, размеры частиц коллоидных осадков значительно больше). Осадительные процессы широко применяются в водоочистительной технике для коагулирования содержащихся в воде коллоидных частиц в целях их укрупнения до таких размеров, при которых они задерживаются отстойниками и фильтрами. [c.108]

    Так как коллоидные частицы по валичине и массе в огромное число раз превосходят молекулы низкомолекуляртя веществ, то при одной и той хе массе дисперсной фазы в единице объема коллоидного раствора содержится значительно меньше частиц, чем в единиде объема истинного раствора. Поэтому, осмотическое давление коллоидных растворов иного меньше, чем осмошческое давление истинных растворов. Довольно часто с увеличением концентрации золя осмотическое давление не увеличивается, как у истинных растворов, а наоборот уменьшается. Это связано с укрупнением (агрегированием) коллоидных частиц при увеличении концентрации. [c.16]

    В кислой среде, если отсутствуют предпосылки для укрупнения коллоидных частиц, вязкость с изменением значений pH близка к постоянной величине. В противоположность этому, в щелочной среде (см. рис. 7.10,6), в зоне pH 10,5—11,5 имеет место аномальный рост вязкости, а при обратном подкислении образуется гистерезис вязкости. Причины возникновения этой аномалии и ее обратимости еще не установлены. Известно, однако, что такое увеличение вязкости лигносульфонатов не сопровождается их явной коагуляцией. Это является следствием расширения двойного электрического с оя вокруг укрупненных частиц. Действительно, характер изменения электрофоретической скорости в этой зоне pH совпадает с кривой вязкости. В точке максимума вязкости скорость электрофореза сульфитно-дрожжевой бражки достигла 8 мкм/с против 5 мкм/с при pH 7. [c.237]

    Коллоидные растворы достаточно устойчивы благодаря наличию у мицелл положительных или отрицательных зарядов и сольватных оболочек из молекул воды, что препятствует их укрупнению и выделению в осадок. Однако при нагревании или добавлении кислоты или щелочи, а также раствора какого-либо другого электролита или при смещивании двух коллоидных растворов, мицеллы которых имеют противоположные заряды, происходит укрупнение, или коагуляция, коллоидных частиц. Укрупненные частицы под влия 1ием силы тяжести оседают на дно сосуда (седиментация), образуя осадок. [c.83]

    Аморфные осадки осаждают обычно на холоду или из слабонагретых растворов. Затем раствор с осадком доводят до кипения, что способствует коагуляции мелкодисперсных коллоидных частиц. Укрупнению аморфных частиц Ре(ОН)з и А1(0Н)з в большой мере способствуют соли аммония, образующиеся при нейтрализации кислых растворов. Аморфные осадки обычно отфильтровывают тотчас же после осаждения. [c.19]

    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень зшшя размер частиц, наличие у них электричргких зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от осе-даНИЯ, "второе и третье — от укрупнения в результате слипания, (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида пре имущее ственно (или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного веш ества и от условий опыта. Чтобы выяснить ближе характер зтой адсорбции, обратимся прежде всего к результатам экспериментального изу- J чения структуры коллоидных растворов. [c.515]

    Малое значение и непостоянство осмотического давления лиозолей являются причиной того, что осмометрия, а также эбулио-скопия и криоскопия не применяются для определения численной концентрации или размера коллоидных частиц. Следует, впрочем, заметить, что осмометрические, эбулиоскопические и криоскопиче-ские методы нельзя использовать для определения размера коллоидных частиц не только вследствие указанных причин, но и из-за обычного присутствия в лиозолях электролитов. При очистке лиозолей, например диализом, вместе с посторонними электролитами может удаляться и стабилизующий электролит, что приводит к нарушению агрегативной устойчивости системы, укрупнению частиц и, следовательно, к получению неправильных значений осмотического давления. Кроме того, на результатах осмометрических определений сильно сказывается так называемое мембранное равновесие ), или равновесие Доннана. Это равновесие устанавливается в результате сложного распределения ионов между коллоидным раствором в осмотической ячейке и внешним раствором, о чем подробно сказано в гл. XIV. [c.68]

    Коллоидные системы обладают высокоразвитой по-перхностью раздела и, следовательно, большим избытком поверхностной энергии. Поэтому они термодинамически неустойчивы и имеют постоянную тенденцию к самопроизвольному уменьшению межфазной энергии. Это уменьшение в большинстве случаев происходит за счет сокращения суммарной поверхности частиц дисперсной фазы золей. Другими словами, если мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в более крупные агрегаты. Этот процесс укрупнения коллоидных частиц в золях, происходящий под влиянием внешних воздействий, носит название коагуляции. [c.226]

    При перекристаллизации происходит укрупнение коллоидных частиц с одновременным уменьшением их числа. В качестве примера перекристаллизации может служить созревание фотографических эмульсий, т. е. укрупнение частиц AgBr, а также пере- [c.325]

    Коллоидные частицы в растворе несут одинаковый по знаку заряд, поэтому при столкновении они взаимно отталкиваются, предотвращая укрупнение и сохраняя устойчивость системы во времени. В целом коллоидный раствор остается, конечно, электро-нейтральным, так как каждая мицелла является электронейт-ральной частицей. [c.99]

    Характерно для коллоидных растворов явление электрофореза. Оно заключается в том, что под влиянием извне приложенной разности потенциалов все кОллондные частицы перемещаются к одному из полюсов. Это свидетельствует о том, что все коллоидные частицы данного коллоида имеют одноименный (поло, ительный или отрицательный) заряд. Наличие одноименного электрического заряда вызывает электростатическое отталкивание частиц если сила отталкивания больше, чем силы притяжения между частицами, то это препятствует укрупнению частиц, т. е, обеспечивает агрегативную устойчивость. Заряд коллоидных частиц возникает вслгедствие адсорбции ионов из раствора. Преимущественно адсорбируются те ионы, которые входят в состав самих частиц. Заряд коллоидной частицы может возникнуть также вследствие частичной диссоциации молекул, составляющих частицу. [c.384]

    Устойчивость и коагуляция коллоидных систем. В термодинамически неустойчивых коллоидных системах непрерывно протекают самопроизвольные процессы, ведущие к укрупнению частиц. Укрупнение частиц возможно двумя путями I) за счет перекристаллизации 2) за счет слипания частиц в более крупные агрегаты (коагуляции или коалесцеиции). Перекристаллизация идет медленно. Коагуляция протекает быстрее. Ее можно вызвать понижением температуры, кипячением, встряхиванием. Все электролиты способны коагулировать коллоидные системы в определенных концентрациях. Необходима минимальная концентрация электролита (порог коагуляции), вызывающая коагуляцию через определенное время. Коагулирующим является ион, по знаку противоположный заряду частицы чем выше его заряд, тем сильнее коагулирующее действие (правило Шульце—Гарди). Выпадающий коагулят всегда содержит коагулирующие ионы. Соотношение порогов коагуляции и коагулирующих ионов обратно пропорционально соотношению их зарядов в шестой степени (2 ). [c.266]

    Возникновение золя снязано с тем, 4to при взаимо действии KI и AgNOs образуются ультрамикрокристал-лики иодида серебра m[AgI]. Эти мельчайшие агрегаты являются зародышами более крупных коллоидных частиц. На их поверхности начинают адсорбироваться из раствора те частицы, которые входят в кристаллическую решетку Agi. Такими частицами в данном растворе будут находящиеся в нем в избытке ионы 1 . Образуется адсорбционный слой, непосредственно связанный с поверхностью твердой частицы. В результате все ультрамикрокристаллики приобретают одноименный (отрицательный) заряд, что препятствует их соединению и укрупнению. Адсорбированные ионы называют ионами адсорбционного слоя, или потенциалопределяю-щими. [c.229]

    При промывании колллоидальных осадков чистой водой наблюдается их пептизация . Ее можно предупредить, промывая осадок разбавленным раствором электролита, например нитрата аммония или азотной кислоты. Рекристаллизация первичных частиц осадка уменьшает пептизацию, так как происходит рост частиц в осадке и слипание коллоидных частиц в коагуляте. Укрупнение частиц с потерей ими зарядов понижает дисперсность коллоидной системы. Этот процесс называется коагуляцией. [c.87]

    По мнению автора, одним из достаточно удачных решений задачи ограничения движения пластовых вод в промытых пропластках неоднородного пласта является метод закачки в обводненные пропластки полидисперсных систем, предложенный д-ром техн. наук А. Ш. Газизовым [47]. Основными компонентами этой системы являются ионогенные полимеры с флокулирующими свойствами и дисперсные частицы глины. Путем выбора концентрации полимера и глины в глинистой суспензии создаются условия для полного связывания полимера (флокуляции), в результате чего образуются глинополимерные комплексы с новыми физическими свойствами, устойчивыми к размыву потоком. Коллоидные частицы глин под влиянием броуновского движения стремятся равномерно распределяться по объему жидкости. Для осаждения этих частиц необходимо их укрупнение под влиянием кинетической энергии или же уменьшения потенциала у коллоидных частиц Значение его не постоянно, оно изменяется в зависимости от pH среды, температуры, химического состава и степени дисперсности глинистых частиц. Одним из путей снижения -потенциала является добавление в воду полимера. Закономерности флокуляции в жидких дисперсных системах, изложенные в трудах С. С. Воюцкого, Ю. И. Вайнера, Д. Н. Минца, К. С. Ахмедова, А. Ш. Газизова и других исследователей, показывают, что оптимальная доза полимера, обеспечивающая образование наиболее крупных хлопьев и быструю седиментацию, обратно пропорциональна квадрату ради- [c.56]

    Это процесс укрупнения дисперсных частиц в результате их взаимодействия и объединения в агрегаты. В очистке сточных вод ее применяют для ускорения процесса осаждения тонкодисперсных примесей и эмульгированных веществ. Коагуляция наиболее эффективна для удаления из воды коллоидно-дисперсных частиц, т.е. частиц размером 1-100 мкм. Коагуляция может происходить самопроизвольно или под влиянием химических и физических процессов. В процессах очистки сточных вод коагуляция происходит под влиянием добавляемых к ним специальных веществ-коагулянтов. Коагулянты в воде образуют хлопья гидроксидов металлов, которые быстро оседают под действием силы тяжести. Хлопья обладают способностью улавливать коллоидные и взвешенные частицы и агрегировать их. Так как коллоидные частицы имеют слабый отрицательньш заряд, а хлопья коагулянтов слабый положительный заряд, то между ними возникает взаимное притяжение. [c.72]

    II. 1.5. Метод Либиха Основан на фиксировании точки титрования но нросветлению раствора в изоэлектрической точке (близкой к точке эквивалентности) вследствие разрушения коллоидных частиц и укрупнения осадка. Как правило, точность этого метода невелика и зависит от наличия фоновых электролитов и характеристик поверхности раздела фаз осадок-раствор. [c.44]

    В атмосфере одновременно с процессами сорбции происходят сталкивание и соединение разноименно заряженных частиц. Эти процессы также приводят к образованию в атмосфере сорбционных макробарьеров. Однако в отличие от барьеров, связанных с сорбцией газов, дальность мифации частиц в атмосфере в этом случае не увеличивается, а резко уменьшается, так как происходит укрупнение частиц и увеличение их массы. Расчеты показывают, что скорость осаждения коллоидных частиц в воздухе в 600 раз больше, чем в воде. Следовательно, укрупнение аэрозолей приводит к их более [c.56]


Смотреть страницы где упоминается термин Коллоидные частицы укрупнение: [c.63]    [c.91]    [c.86]    [c.176]    [c.178]    [c.614]    [c.375]    [c.361]    [c.17]    [c.82]   
Курс коллоидной химии (1976) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы



© 2025 chem21.info Реклама на сайте