Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна полиамидов

    В то же время при (большой) концентрации (0,6-Ю ) разрывов связей на 1 м (т. е. 0,83 мол/м ) рассеивающаяся в виде тепла Qь полная энергия, накопленная втягивающимися концами цепей, в среднем равна 722 кДж/м . Химическая энергия Уь данного числа разорванных связей равна 156 кДж/м . Значение средней энергии следует также сравнить с плотностью накопленной энергии упругой деформации, т. е. с о /2 . Эта величина равна 125 МДж/м для сверхвысокопрочного волокна ПА-6 и в свою очередь составляет лишь шестую часть плотности энергии когезии данного материала. Поэтому рассеяние энергии, обусловленное разрывом связей, немного меньше, чем чисто гистерезисные потери при нагружении и раз-гружении волокна полиамида (для ПА-6 1 б 5-10 при частоте 10—30 Гц). [c.259]


    Детальное изучение природы лиофильных коллоидов стимулировалось все более интенсивным развитием промышленности эфиров целлюлозы, натурального и синтетического каучука, искусственного волокна, полиамидов, полиэфиров и других высокомолекулярных веществ или высоко- [c.11]

    Кристаллическое строение характерно для волоконных полимеров. Макромолекулы в волокне уложены регулярно, их цепи параллельны оси волокна. Волоконные полимерные поликристаллы играют важную роль в быту и технике. Так построены синтетические волокна — полиамиды, полиэфиры и т. д. и природные— целлюлозное волокно, щерсть и щелк. В последних двух случаях мы встречаемся с фибриллярными белками (см. ниже гл. 4). [c.132]

    Большую часть полиамидов употребляют для изготовления волокна. Полиамиды используют для изготовления труб, различных деталей машин, пленки и лаков. [c.95]

    В противоположность целлюлозным искусственным волокнам, способность полиамидов плавиться при определенной температуре делает излишним их перевод в раствор. Если не считать ранее известного метода получения нитей из неорганического вещества в расплаве (стеклянное волокно), полиамиды являются первым органическим соединением, из которого можно производить в техническом масштабе текстильное сырье из расплава путем его выдавливания через фильеру. [c.272]

    Детальное изучение природы лиофильных коллоидов стимулировалось все более интенсивным развитием промышленности эфиров целлюлозы, натурального и синтетического каучука, искусственного волокна, полиамидов, полиэфиров и других высокомолекулярных веществ, включавшихся в эту группу коллоидов, а также разработкой ряда новых специальных методов исследования. Успехи органической химии позволили синтезировать большое количество новых важных видов высокополимеров и неопровержимо доказали наличие в них длинных цепных макромолекул с различной степенью гибкости. [c.11]

    ПОЛИАМИДНЫЕ ВОЛОКНА —ПОЛИАМИДЫ [c.63]

    В химической промышленности применение вакуумных сушильных аппаратов позволяет резко увеличить выпуск таких ценнейших материалов, как синтетические волокна, полиамиды, аминопласты, полиэтилен, органические растворители. Искусственные кристаллы алмаза, рубина, сапфира, используемые в квантовых генераторах, создаются с применением вакуумной техники. [c.9]


    I. Эти полиамиды имеют различную термостабильность, т. е. неодинаковую стойкость при высокой температуре. Полиамиды типа капрон не разлагаются и не деструктируются при длительном выдерживании при температурах формования волокна. Полиамиды типа найлон 6,6 в этих условиях начинают разлагаться с выделением СОо, NHз и других продуктов. Эта особенность [c.62]

    Полиамиды получают при поликонденсации диаминов с дикарбоновымн кислотами, например при конденсации гексаметилендиамина и адипиновой кислоты, полимеризацией ш-аминокислот и другими методами. В результате этих реакций получается полигексаметиленадипамид. Из полигексаметиленадипамида в США изготовляют искусственное волокно найлон. Это волокно по свойствам близко к шерстяному и шелковому волокнам, а по некоторым свойствам даже превосходит их. Исключительно высокое сопротивление разрыву найлонового волокна, достигающее 4000—4500. кгс/см объясняется полярностью молекулы полигексаметиленадипамида, возможностью образования водородной связи между отдельными молекулярными цепочками и тем, что в вытянутом волокне полиамид находится главным образом в ориентированном, кристаллическом состоянии. Близко по свойствам к найлону полиамидное волокно капрон, получаемое в Советском Союзе путем полимеризации капролактама. [c.420]

    Синтетические волокна. Полиамидые волокна — капрон, энант и нейлон — получаются из полиамидных смол (см. разд. 31.1.1). Капрон по внешнему виду напоминает натуральный шелк, но гораздо более прочен и менее гигроскопичен. Капрон широко применяется для изготовления высокопрочного корда, красивых прочных тканей и трикотажа, веревок, канатов, сетей, чулочных и трикотажных изделий. [c.647]

    Эфиры дикарбоновых кислот, особенно арильные, реагируют с диаминами при значительно более низкой температуре, чем свободные дикарбоновые кислоты. Так, можно получить образующий волокно полиамид из гексаметилендиа.мипа и дикрезилового эфира адипиновой кислоты уже при 155°. [c.44]

    В [6] дополнительного списка литературы приводятся также данные об улучшении некоторых других свойств термопластов при их наполнении. В табл. 1.2 перечислено большинство технически важных термопластов с указанием типичных наполнителей и свойств, которые улучшаются при наполнении. Полиамид 66 является хорошим примером термопласта, практически все свойства которого улучшаются при введении 20—40% стеклянного волокна. Особенно резко возрастают модуль упругости, прочность при растяжении, твердость, устойчивость к ползучести, теплостойкость при изгибе. Термический коэффициент линейного расширения также уменьшается, причем особенно резко в направлении ориентации волокон и становится соизмерим с соответствующими коэффициентами для меди, алюминия, цинка, бронзы и т. п. (В [7] дополнительного спйска литературы приведены данные о всех свойствах наполненного и ненаиолненного стеклянным волокном полиамида 66). Наполнение полиамидов 30—40% стеклянных микросфер в 8 раз повышает их прочность при сжатии при одновременном возрастании модуля упругости и прочности при растяжении. Эти материалы обладают лучшими технологическими свойствами по сравнению с полиамидами, наполненными стеклянным волокном. Кроме того стеклосферы не разрушаются в процессе переработки. На другие термопласты, такие как полистирол, сополимеры стирола и акрилонитрила, поликарбонат наполнители оказывают менее упрочняющее влияние по сравнению с полиамидами. [c.26]

    Полимерные композиционные материалы широко применяются в транспорте. Наибольшее распространение получили полиэфирные стеклопластики, хотя в настоящее время начинают широко применяться и другие материалы. Так, для замены деталей радиаторов автомобилей, где они подвергаются действию повышенных температур и давлений, находят применение наполненные стеклянным волокном полиамиды и полифениленоксид. Полиэтилен и по-либутилентерефталат, наполненные стеклянным волокном, обладают высокой ударной прочностью и отличными электроизоляционными свойствами и используются в системе зажигания автомобилей. Пенопласты и их комбинации с другими материалами широко используются в производстве сидений, для теплоизоляции и амортизации ударных нагрузок. При этом конструкторы научились использовать наилучшим образом специфические свойства полимерных композиционных материалов. [c.411]

    Волокнистые наполнители можно вводить в любые термопласты, однако в производстве мебели и предметов широкого потребления наиболее широко используются армированные волокнами полиамиды и полипропилен. Рубленые волокна вводятся для увеличения кратковременной и длительной прочности и модуля упругости, т. е. жесткости термопластов при сохранении технологиче- [c.430]

    Производство капронового волокна. Полиамид капрона (перлон) получается при гомополиконденсации из ю-а м и-нокапроновой кислоты или ее лактама. Исходным сырьем в производстве лактама служат фенол, циклогексан, бензол и другие аналогичные соединения. Чаще всего он получается из фенола по схеме. [c.308]



Смотреть страницы где упоминается термин Волокна полиамидов: [c.674]    [c.420]    [c.638]    [c.217]    [c.349]    [c.396]    [c.381]    [c.732]    [c.14]    [c.732]   
Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Термо-жаростойкие и негорючие волокна (1978) -- [ c.92 ]




ПОИСК







© 2024 chem21.info Реклама на сайте