Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические определение по излучению изотопов

    Радиохимические методы щироко применяют в аналитической химии, например при измерении радиоактивности образца. Это довольно просто, когда образец обладает естественной радиоактивностью. Однако при измерениях основной трудностью является проблема абсолютного отсчета, т. ( . возможность отсчета каждой излучаемой частицы. Это включает вопросы геометрии, рассеяния, поглощения в источнике и эффективность счетчика. Все они могут быть решены в определенной степени, но трудно рассчитывать, что ошибка будет менее 1—2%. Однако известны случаи, когда эта ошибка оправдана удобством метода, а также преимуществом этого метода перед трудными обычными химическими. Качественное или даже полуколичественное определение радиоактивных элементов может быть проведено довольно быстро, если для них известны гамма-излучения изотопов. Обычно идентификация радиоактивного изотопа делается на основе его периода полураспада. Это оказывается весьма затруднительным, если период полураспада велик, или неудобным для определения, даже если он равен нескольким часам. [c.423]


    Практические работы по определению содержания химических элементов методом измерения излучения их естественных радиоактивных изотопов [c.361]

    Методы, основанные на ядерных реакциях—радиоактивационный, или (его главная часть)—нейтронно-активационный метод анализа. Нейтронно-активационный метод возник после открытия атомной энергии и создания действующих атомных реакторов. Принцип метода заключается в следующем. Анализируемый материал подвергают действию нейтронного излучения в атомном реакторе или посредством нейтронного генератора. При взаимодействии нейтронов с ядрами элементов происходят ядерные реакции и образуются радиоактивные изотопы всех элементов, входящих в состав пробы. Затем пробу переводят в раствор и разделяют элементы химическими методами. Завершающим этапом определения является измерение интенсивности радиоактивного излучения каждого элемента пробы. [c.32]

    Определение состава соединений по радиоактивности элементов. Непосредственное измерение радиоактивности отдельных изотопов может оказаться весьма полез-ным при разработке быстрых методов определения состава соединений [266]. В этом случае для синтеза исследуемого соединения удобно использовать исходные вещества, меченные изотопами элементов, входящих в его состав и сильно различающихся по периодам полураспада и характеру ядерных излучений. Если известны удельные активности исходных веществ (пересчитанные на удельные активности элементов), из которых получается анализируемое соединение, и активности входящих в состав получаемых веществ элементов в определенные моменты времени, то это позволяет рассчитать количественный состав соединений. Таким образом, например, находилось соотнощение между числом атомов фосфора и вольфрама в фосфоровольфрамате натрия. Применение в качестве радиоактивных изотопов (период полураспада 14,3 дня) и (период полураспада 24,1 ч) позволило достигнуть точности определения 2,5%, в то время как точность обычного химического метода анализа в этом случае не превышает 8—10%. [c.148]

    В природе встречаются все типы стабильных ядер. Их относительная распространенность может изменяться в широких пределах — в 10 раз. Определение распространенностей изотопов было проведено рядом авторов, и полученные результаты использовались для объяснения процесса образования элементов [16, 1968] подобные измерения большей частью осуществлялись в области спектро-аналитических астрономических наблюдений и неорганической химии. Чувствительность масс-спектрометрического анализа образцов, приготовленных в удобной для изучения форме, высока, однако необходимо признать, что этот метод не является во всех случаях лучшим или наиболее чувствительным. Часто обычные химические методы оказываются более приемлемыми. Например, наличие некоторых химических соединений в воздухе легче устанавливается при пропускании больших количеств образца через соответствующий реагент при этом нет необходимости проводить обогащение для повышения чувствительности обнаружения примесей. Радиоактивные изотопы с гораздо большей чувствительностью обнаруживаются путем регистрации излучения, чем методом масс-спектрометрии. Так, например, в мл тяжелой воды, полученной из 13 ООО т поверхностных вод Норвегии, была определена молярная доля трития, равная 3,2-10 , что позволило установить мольную долю трития в водороде этих вод, равную 10 [797]. Масс-спектро-метрический метод не обладает подобной чувствительностью. Однако преимущества его в определении относительной распространенности изотопов элементов неоспоримы. В настоящей главе будут рассмотрены подобные измерения, а также измерения относительных количеств различных положительных осколочных ионов в масс-спектрах химических соединений. Применение метода анализа изотопного состава рассмотрено в конце настоящей главы, применение в химическом анализе обсуждено в гл. 8. [c.70]


    Принцип метода. Метод радиоактивных индикаторов основан на тождественности физико-химических свойств различных изотопов одного и того же элемента. Допустим, исследователя интересует судьба определенного элемента в каком-либо химическом (физическом или биологическом) процессе. В изучаемую систему вводят известное количество радиоактивного изотопа того же элемента. Поскольку изотопы практически идентичны по своим химическим и физическим свойствам, то радиоактивную добавку в изучаемом процессе постигнет та же судьба, что и нерадиоактивную основную массу. Измеряя излучение радиоактивной добавки, можно с высокой степенью чувствительности следить за ее поведением, а следовательно, и за поведением интересующего нас элемента, который таким образом отмечен радиоактивным индикатором. Иными словами, поскольку исходное соотношение радиоактивного и стабильного изотопов в течение всего изучаемого процесса не меняется (что характерно для большинства случаев), то по результатам измерения радиоактивности определенной части выделенного вещества в начале и в конце опыта можно рассчитать, в какой степени исследуемый элемент затрагивается данным процессом (например, какое количество его перешло в другую систему или форму или осталось в исходной). [c.158]

    Активационный анализ заключается в том, что путем соответствующего облучения пробы вызывают в ней ядерную реакцию, превращающую исследуемый элемент в его радиоактивный изотоп. По характеру и интенсивности излучения последнего можно обнаружить присутствие и определить количество этого элемента. Этот метод качественного и количественного анализа имеет во многих случаях преимущество перед всеми другими из ныне применяемых и получает за последние годы быстро расширяющееся распространение. В благоприятных случаях он позволяет обнаруживать в пробе следы примесей до 10 —10 г, не открываемые даже спектральным путем. При количественных определениях он избавляет от иногда очень сложных операций полного разделения, необходимых при химическом анализе. При всех этих преимуществах относительная точность его, однако, ограничена точностью радиоактивных измерений и не превышает нескольких процентов. [c.435]

    Можно воспользоваться и несколько иным методом, при котором образец неизвестного состава подвергают облучению нейтронами в течение достаточных промежутков времени, после чего проводят идентификацию и определение химических элементов по характеристикам излучения образовавшихся радиоизотопов. Вообще говоря, после облучения исследуемого образца определяемые химические элементы необходимо отделить обычными химическими методами с использованием соответствующих носителей. (Применение носителей в радиохимии описано в гл. XII, раздел Г.) В качестве эталонов при анализе можно использовать образцы известного состава, содержащие определенные количества исследуемого изотопа и облученные в тех же условиях, что и данный образец. В некоторых случаях желательно применять в качестве эталона образец вещества аналогичного состава часто употребляют маленькие образцы, позволяющие избежать ошибок за счет сильного поглощения нейтронов другими компонентами. [c.212]

    Методы определения содержания химических элементов по излучению их естественных радиоактивных изотопов [c.360]

    В научных исследованиях — в химии, медицине, биологии, металловедении и др. — при определении переходов вещества или элемента из одного материала (соединения, раствора, сплава, ткани растения, органа тела и т. п.) в другой также используют радиоактивные изотопы. При этом к химическому соединению, используемому в исследовании, примешивают определенное количество такого же соединения, но содержащего атомы радиоактивного изотопа. Химическое поведение последних практически ничем не отличается от поведения стабильных изотопов. Радиоактивные изотопы своим излучением метят вещество, интересующее исследователя, указывают на его присутствие. Поэтому такой прием обнаружения веществ получил название метода меченых атомов или метода радиоактивных индикаторов. [c.33]

    Опубликовано более 40 работ по определению примесей в алюминии высокой чистоты активационным методом. Анализируемый образец и эталоны облучают в ядерном реакторе потоком нейтронов 10 —нейтрон см сек и измеряют активности образующихся при этом радиоактивных изотопов с помощью сцинтилляционного у-спектрометра. Время облучения (в зависимости от определяемых примесей) от нескольких часов до нескольких недель. Большей частью предварительно разделяют примеси на группы различными методами осаждением на носителях, экстракцией, ионообменной хроматографией. Известен метод определения примесей с использованием у-спектрометрии и без химического разделения селективность метода при определении отдельных элементов достигается выбором соответствующего времени облучения и охлаждения [5951. Предложен метод активационного анализа без разрушения образца с применением Ое (Ь1)-детекторов у-излучения, обладающих высокой разрешающей способностью [1093]. [c.228]


    К достоинствам метода РАА относятся высокая чувствительность возможность определения отдельных элементов в ряде случаев без разрушения образца отсутствие высоких требований к чистоте химических реактивов при работе с короткоживущими изотопами анализ может быть проведен в течение нескольких минут. К недостаткам метода следует отнести возможность деструкции или даже разрушения образца при облучении, так как для достижения высокой чувствительности необходимо иметь достаточно мощные потоки ядерных излучений. Кроме того, при работе с сильно активирующимися материалами приходится прибегать к специальной защитной технике. [c.165]

    Применение стабильных и радиоактивных изотопов изотопные метки ( меченые атомы ) при химических и биохимических исследованиях определение возраста геологических и биологических объектов, активационный анализ (определение неактивного элемента -В пробе путем превращения его в радиоактивный изотоп и измерения его излучения) источники радиоактивного излучения в технике и медицине. [c.397]

    Однако применение короткоживущих изотопов имеет и свои ограничения, которые в основном связаны с быстрым распадом их активности. Очевидно, что работа с короткоживущими изотопами должна проводиться непосредственно у источника излучения, который к тому же должен быть оборудован системой для быстрой транспортировки облученных образцов. Все вспомогательные операции, в том числе и химическое разделение, должны быть быстрыми, что часто не дает возможности достигнуть необходимой степени радиохимической чистоты. Поэтому конечное определение обычно выполняется с привлечением физических средств дискриминации, основное среди них — сцинтилляционная 7-спектрометрия. Особенность использования короткоживущих изотопов заключается в ограниченном числе элементов, одновременно определяемых из одной навески. [c.144]

    Другой способ — введение в анализируемый раствор перед разделением известного количества радиоактивного индикатора определяемого элемента с характеристиками распада, отличающимися от соответствующих характеристик радиоактивного изотопа, который используется для активационного определения. После радиохимического выделения, используя различие характеристик, по выходу радиоактивного индикатора определяют химический выход элемента. Для этого, например, можно использовать различия в типе распада, энергии излучения и периоде полураспада. Чаще всего используют последний случай. Тогда при растворении облученного образца вводят долгоживущий [c.153]

    В отличие от химических методов анализа продуктов активации, основывающихся на различии химических свойств элементов, физические (инструментальные) методы для раздельного определения элементов используют характерные параметры распада их радиоактивных изотопов. Наиболее характерные параметры схемы распада — тип радиоактивного распада, энергия излучения и период полураспада. Эти характеристики и используются наиболее часто для дискриминации радиоактивных изотопов. [c.205]

    Однако 7-спектрометрии в применении к активационному анализу присущи и определенные недостатки и ограничения. Прежде всего это невозможность определения элементов, дающих при облучении радиоактивные изотопы, которые являются чистыми Р --излучателями, — для их определения всегда требуется химическое выделение с Р-метрическим окончанием. Методом у-спектрометрии без привлечения других характеристик распада невозможно раздельно определять чистые Р+-излучатели, так как их аннигиляционное у-излучение имеет одинаковую энергию для всех позитронных излучателей. [c.219]

    Для определения урана в рудах и минералах может быть также использован радиометрический метод. Этот метод анализа имеет две особенности, отличающие его от других методов. Интенсивность радиоактивного излучения не зависит от физического и химического состояния элемента и присутствия примесей, что позволяет во многих случаях производить определение непосредственно в пробе без какой-либо ее обработки. Второй характерной особенностью радиометрического анализа является то,, что чувствительность его определяется числом распадающихся атомов, а не общей массой радиоактивного элемента. Поэтому чувствительность значительно выше для короткоживущих изотопов, чем для долгоживущих. [c.53]

    Радиоактивный изотоп — вид радиоактивных атомов химического элемента, имеющих одинаковое массовое число. Радиоактивный изотоп характеризуется присущим ему периодом полураспада, типом распада и энергией излучения, а также определенным энергетическим состоянием. Изотопные атомы с данным массовым числом, но в разных энергетических состояниях называются ядерными изомерами. Они отличаются не только энергетическим состоянием ядра, но и периодом полураспада и энергией у-фото-нов. [c.12]

    Благодаря специфичности ядерных свойств радиоактивных изотопов, установить химическую природу элемента по результатам радиометрических определений во многих случаях легче, чем при помощи обычных химических методов. При качественном анализе для идентификации изотопов используют различные физические методы (определение периода полураспада, пробегов излучения в веществе, энергии излучения). Часто идентификация радиоактивного изотопа сочетается с количественными определениями. [c.203]

    Как оценить чувствительность определения химического элемента по излучению его естественного радиоактивного изотопа  [c.236]

    Следует, отметить также методы анализа, основанные на применении меченых атомов, т. е. радиоактивных изотопов определяемых элементов. Наличие у последних радиоактивности, а также тождественность их химических свойств со свойствами соответствующих устойчивых изотопов дает возможность пользоваться при определении счетны.ми устройствами, измеряющими интенсивность излучения того или иного рода. При этом весьма просто решаются такие задачи, решить которые с помощью обычных аналитических методов затруднительно, а иногда и вовсе невозможно. Приведем пример. Для того чтобы установить, как распределяется фосфор между металлом и шлаком при плавке стали, вводят в металлургическую печь фосфат кальция, содержащий радиоактивный изотоп фосфора с периодом полураспада 14,3 дня. Во время хода плавки отбирают пробы металла и шлака и определяют при помощи счетного устройства их радиоактивность. Таким путем быстро и легко решается вопрос о том, как распределяется фосфор между сталью и шлаком и от каких факторов это распределение зависит. Метод меченых атомов отличается высокой чувствительностью, что также составляет одну из ценны.х его особенностей. [c.14]

    При использовании метода стабильных индикаторов обогащают химическое соединение одним из стабильных изотопов исследуемого элемента. В качестве стабильных изотопов часто применяют изотопы легких элементов, такие, как дейтерий, углерод-13, азот-15, кислород-18 и др. Количественное определение изотопного состава производится- главным обрaзч>м нp - помощи- ас - ектрометров. Кроме того, известны методы определения изотопного состава по плотности, теплопроводности, показателям преломления, а также на основе данных инфракрасной, высокочастотной спектроскопии и ядерного магнитного резонанса. Преимуществом стабильных изотопов является их устойчивость и отсутствие ядерных излучений. Однако только небольшое число элементов имеет стабильные изотопы, подходящие для использования в качестве меченых атомов. Высокая стоимость обогащенных стабильных изотопов, сравнительно сложная техника определения изотопного состава, довольно низкая чувствительность и точность методов количественного определения, наличие значительных изотопных эффектов у легких эле- [c.13]

    Следует лишь отметить, что для идентификации радиоактивных изотопов существуют методы, основанные на определении констант распада, дальностги пробега а-частиц и энергии -частиц. Эти методы необходимы для проверки радиохимической чистоты препарата. При работе с радиоактивными препаратами приобретает исключительное значение их радиохимическая чистота, так как определение количества радиоактивного вещества обычно производится по интенсивности излучения. В отличие от исследований с обычными химическими элементами при количественном определении радиоактивпых изотопов по интенсивности их излучения химическая чистота не играет столь большой роли и имеет значение лишь в связи с возможностью образования поглощающего слоя при радиоактивных измерениях. Требования к химической чистоте обычно сохраняются в той мере, в какой загрязнения могут влиять на измерения. Поэтому особо существенное значение имеет химическая чистота при определении а-излучателей, но и при -излучателях с мягкими р-лучами загрязнения могут также играть большую роль. [c.32]

    РАДИОХИМИЯ. Наука, изучающая химические свойства радиоактивных веществ и разрабатывающая методы определения радиоактивных изотопов химических элементов. Методы Р. используются прн изучении содержания естественных радиоактивных элементов в почвах, растениях (и в других объектах), а также при анализе почв, растений и с.-х. продуктов на содержание в них радиоактивных веществ, образующихся при ядерпых взрывах (радиоактивных изотопов стронция, цезия, церия, иода и других элементов). В Р. используются как химические, так и физические методы исследоваиия, в частности методы определения количества радиоактивных веществ по радиоактпвному излучению. Благодаря этому радиохимические методы позволяют определять чрезвычайно малые количества радиоактивных веществ. См. также Радиоактивность почвы, Изотопный метод. [c.250]

    ЦЕРИЙ ( erium, от названия астероида Церис) Се — химический элемент П1 группы 6-го периода периодической системы элементов Д. И. Менделеева, относится к лантаноидам, п. н. 58, ат. м. 140,12. Природный Ц. состоит из 3 стабильных изотопов, известны около 15 радиоактивных изотопов. Открыт Ц. в 1803 г. Берцелиусом и Хизингером и независимо от них Клапротом. Основным сырьем для получения Ц. является минерал монацит. Ц.— мягкий металл серого цвета, т. пл. 804 С. Химически активен. В соединениях проявляет степень окисления +3 и +4, чем и отличается от других редкоземельных элементов. Ц. применяют в производстве высокоплас-тичных и термостойких сплавов, для изготовления стекла, не темнеющего под действием радиоактивного излучения, для дуговых электродов, кремней зажигалок и др. Соли Ц. (IV) — сильные окислители, используются в аналитической химии для определения различных восстановителей. [c.283]

    Предпочитают работать с 1)-изотопами, выбирая при прочих равных условиях изотоп с максимальной энергией фотопика. Линейчатый характер спектра 7-излучения позволяет с помощью соответствующей ядерно-физической аппаратуры анализировать сложную смесь радиоизотопов без их предварительного химического разделения. Тем самым упрощается количественное определение в продуктах коррозии одновременно нескольких элементов. [c.203]

    Определение элементов по их естественной радиоактивности (154). Определение элементов о помощью радиоактивных реагентов (154). Метод изотопного разбавления (155). Радиометрическое титрование (157). Разработка методов разделения элементов. Изучение соосаждения (161). Определение растворимости труднорастворимых соединений (163). Активационный анализ (165). Методы анализа, основанные на проникающей либо отражающей способности радиоактивного излучения (169). Глава 11. Применение изотопов в физико-химических исследова- [c.239]

    Радиохимический вариант активационного анализа значительно более трудоемок, но дает на 1—2 порядка большую чувствительность, чем спектрометрический вариант. Последний основан на различиях в энергии излучения и периодах полураспада образующихся при облучении радиоактивных изотопов и позволяет провести анализ без химического разделения (без разрушения образца), если активность макрокомпонента не мешает определению примесей, либо ограничиться минимумом химических операций по отделению макрокомпонента [15, 21—23]. В этом варианте активность образцов непосредственно после облучения или после отделения макрокомпонентов и активность эталонов определяемых элементов измеряют на сцинтилляционном 7-спектрометре с многоканальным анализатором импульсов, а расчет количества примесей проводят по площадям фотопиков соответствующих энергий радиоактивных изотопов в образце и эталоне. [c.11]

    Дальнейшие пути развития радиоактивационного анализа заключаются в повышении чувствительности, экспрессности и точности определения. Повышение чувствительности возможно путем использования более интенсивных потоков в ядерных реакторах большой мощности до 10 яе /пр/сж -сек,, использования работы реакторов в импульсном режиме с потоками до 10 — 10 нейт.р см сек в импульсе для определения по короткоживущим изотопам, создания ускорителей заряженных частиц с большой силой тока (порядка нескольких миллиампер) для целей активационного анализа, электронных ускорителей сэнергией до30Мэвя мощностью 10 рентг/м-мин для определения кислорода, азота и углерода. Повышения чувствительности и быстроты анализа можно достичь также путем разработки экспрессных химических методов разделения с почти количественным химическим выходом носителей. Чувствительность, быстрота и точность анализа зависят также от совершенства измерительной аппаратуры, в частности от создания полупроводниковых детекторов излучения с высокой разрешающей способностью и многоканальных спектрометров с вычитанием комптонов-ского фона. Большую роль в повышении точности определения должно сыграть применение методов статистической обработки результатов определений, а также разработка быстродействующих анализаторов с элементами электронно-вычислительной техники, позволяющих полностью автоматизировать обработку спектров и результатов измерений [36]. [c.14]

    Исследована возможность определения кислорода, углерода, меди и цинка в горных породах без химического разложения проб путем использования различий в периодах полураспада образугощихся радиоактивных изотопов и облучения при разной энергии тормозного излучения. Показана практическая возможность определения этих элементов в интервале концентраций 0,02—100% в присутствии некоторых других элементов. [c.95]

    Достоинство активационного анализа на тепловых нейтронах — высокая специфичность, так как радиоактивный изотоп, по которому ведется определение, образуется по режцйи п, у) из изотопа определяемого элемента и может иыто идентифицирован по периоду полураспада и энергии радиоактивного излучения. Сочетание избирательного химического выделения с дополнительной идентификацией по характеристикам радиоактивного распада обусловливает высокую надежность получаемых результатов. [c.120]

    Активационный анализ. На явлении искусственной радиоактивности основан самый чувствительный метод химического анализа — активационный анализ. Исследуемое вещество облучают потоком частиц, способных вызывать ядерные реакции. При этом многие элементы,активируются, т. е. образуют радиоактивные изотопы, которые легко обнаружить по испускаемым ими излучениям. Чаще всего используют облучение нейтронами. При этом могут образоваться только изотопы того же элемента. При наличии соответствующей аппаратуры применяют для облучения также и потоки протонов, дейтронов, а-частиц и фотонов высокой энергии (у-лучей), способных выбивать из ядер нейтроны или протоны. В последнее время в активационном анализе нашло применение облучение потоком ядер Не , что позвм[яет решить трудную аналитическую задачу — определение малых примесей кислорода в металлах.— Прим. ред. [c.543]

    Следует упомянуть также о методе радиоактивационного анализа, основанном на том, что при облучении гафния нейтронами образуются радиоактивные изотопы, излучен ие которых регистрируется соответствующими счетными устройствами. Можно пользоваться изотопом Hf-179, обладающим очень коротким периодом полураспада—19 сек. этот прием специфичен, так как другие изотопы ему не мешают, но малый период жизни изотопа Hf-179 заставляет выполнять определение непосредственно у источника облучения, т. е. около ядерного реактора. Продолжительность жизнй изотопов Hf-175 и Hf-181 измеряется не секундами, а сутками, но для количественного их определения требуется химическое разделение изотопов элементов, образующихся при облучении [548, 549]. Активационные методы позволяют определять гафний в металлическом цирконии. Вероятно с развитием ядерной техники и техники измерений эти методы получат широкое распространение. [c.202]

    Одной из основных областей применения источников 7-излучения является гаммааппаратостроение для промышленной радиографии, используемой в полевых условиях строительства магистральных газо- и нефтепроводов, при проведении монтажных и строительных работ, строительстве атомных и тепловых электростанций, химических производств, в энергетическом и транспортном машиностроении, судостроительной промышленности и т. п. Имеется опыт практического применения источников с изотопами железа-55, кадмия-109, плутония-238, америция-241, тулия-170 при создании комплекса геологической и технологической аппаратуры для определения концентрации металлов в процессе добычи и переработки руд. Приборы используются для определения суммы редкоземельных элементов меди, цинка, свинца, олова, железа, никеля, молибдена, тантала, ниобия, циркония, бария, сурьмы, вольфрама, урана и других металлов. [c.560]

    При проведении работ с использованием радиоактивных индикаторов нередко приходится сталкиваться со случаями, когда исходный раствор, содержащий радиоактивный изотоп в определенной химической форме, не содержит стабильных изотопов того же элемента в той же химической форме, или содержит их в количествах, которые нельзя обнаружить обычными химическими или физическими методами. В таких случаях говорят об использовании раствора радиоактивного изотопа без носителя. Растворы без носителя содержат ультрамалые количества вещества. Такие ультрамалые количества радиоактивных изотопов, присутствие которых устанавливают по радиоактивному излучению, принято называть индикаторными. Поведение веществ, находящихся в индикаторных количествах, может отличаться от поведения макроколичеств этого же вещества в идентичных условиях. Это проявляется, в частности, в повыщенной склонности к адсорбции и коллоидообразованию, которая характерна для ультраразбавленных. растворов соединений, содержащих радиоактивные атомы. [c.140]


Смотреть страницы где упоминается термин Элементы химические определение по излучению изотопов: [c.47]    [c.525]    [c.151]    [c.403]    [c.403]    [c.139]    [c.157]    [c.126]    [c.538]    [c.160]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.577 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопы излучение

Изотопы определение

Элемент химический

Элемент, определение



© 2024 chem21.info Реклама на сайте