Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аксон рост и развитие

    При развитии синапса происходит постсинаптическая специализация в мембранах клеток-мишеней, появляются специфические рецепторы нейромедиаторов и расширяются постсинаптические области при окончании ( конус роста ) иннервирующего аксона. Несомненно, эти процессы координированы. Конечно, как указывалось выше, имеется много отдельных программ дифференциации, а не просто один ген синапса , контролирующий синтез всех компонентов синапса. [c.328]


    Как же создается правильная система связей Не определяется ли продвижение конусов роста к разным местам назначения просто различием в их исходной позиции Эту гипотезу можно проверить, выяснив, какие соединения образуются в условиях, когда исходные позиции изменены. Например, на ранних стадиях развития куриного зародыша, пока еше не начался рост аксонов, можно вырезать кусочек нервной трубки и перевернуть ее на 180° (рис. 18-74). Тогда нейроны, изначально предназначенные для иннервации мышцы А, окажутся на месте нейронов для мышцы Б, и наоборот. В этом случае, если только перемещение не слишком велико, конусы роста перемещенных нейронов хотя и будут двигаться по измененным путям, но все же придут к мышцам, соответствующим первоначальному положению нейрона в нервной трубке. Это означает, что нейроны, предназначенные для иннервации разных мышц, не эквивалентны (см. разд 15.5.7) они различаются не только по своему расположению, но и по каким-то внутренним химическим особенностям, определяющим специфический выбор мишени. В таких случаях говорят, что схема связей находится под контролем нейронной специфич- [c.142]

    С наступлением зрелости процессы, связанные с развитием нервной системы, не прекращаются. Как уже говорилось (разд. 18.4.1), у взрослых особей нерв-но-мыщечные соединения могут регенерировать после перерезки нерва. Концы оставшихся частей аксонов, соединенных с телами нервных клеток, превращаются в конусы роста и прокладывают себе путь к денервированной мышце. Здесь они образуют синапсы главным образом в местах прежнего расположения синапсов, что определяется особенностями базальной мем- [c.145]

    Дифференциация происходит в результате взаимодействия генетической программы и факторов окружающей среды. Вещества, которые эффективно стимулируют дифференциацию и рост клетки, называются трофическими факторами они могут продуцироваться органами-мишенями данного нейрона, окружающими его глиальными клетками или одним из иннервированных нейронов. Если мы вспомним ганглионарные клетки симпатических нервов, то увидим, что действие не нейрональных клеток осуществляется как в ортоградном (антероградном), так и ретроградном направлениях. Кроме такой межсинаптической регуляции, трофические факторы играют определенную роль в выживании клетки, миграции клетки, развитии нейритов (аксонов или дендритов) в направлении их мишеней, образовании и стабилизации специфических синапсов. Трофические факторы актив- [c.323]

    И как ОНН попадают в нужные места Нервная система ставит перед нами еще одну проблему как образуются правильные соединения между нервными иетками В большинстве других областей эмбриологии можно рассматривать клетки как точечные объекты, каждый из которых занимает определенное положение и обладает определенными внутренними свойствами. Но сущ. ность нейрона в том и состоит, что он не является точечным объектом он необычайно вытянут и снабжен длинным аксоном и дендритами, соединяющими его с другими клетками. Фунющя нейронов состоит в регулировании и интеграции различных видов активности организма, и эта функщ1я определяется их соединением. Если соединения ошибочны, работа нервной системы будет нарушена. Мы уже можем объяснить, как образуются нейроны различных типов и как их тела уиадьшаются в регулярную структуру для этого мы привлекаем те же принщшы, которые применимы и к остальным системам тела. Тем не менее упорядоченный рост аксонов и дендритов и образование правильной системы синапсов представляют собой явления иного порядка. Передний конец растущего аксона или дендрита ползет примерно так же, как и мигрирующая клетка его можно назвать мигрирующим органом неподвижной клетки. И движения такого мигрирующего органа регулируются частично теми же факторами, что и движения мигрирующей клетки (контактными воздействиями и др.), но, когда мы рассматриваем его взаимоотношения с телом иетки и с другими нервными волокнами и его способность образовывать синапсы, перед нами встают новые проблемы, требующие нового подхода. Поэтому мы не будем здесь углубляться в вопросы построения нервной системы-высшего продукта индивидуального развития,-мы вернемся к этим вопросам в главе 18. [c.126]


    Для большей ясности на рисунке слои миелина прилегают друг к другу ие та плотно, как в действительности (см. Д). Б. Схематическое изображение шванновс-10Й клетки на начальной стадии образования спирали миелина вокруг аксона во время его развития. Обратите внимание на то, что наматывание мембраны шванновской клетки на аксон осуществляется за счет роста внутреннего края (помеченного стрелкой). В. Схематическое изображение олигодендроцита, который формирует миелиновые оболочки в центральной нервной системе. Один олигодендроцит миелинизи-рует несколько разных аксонов. [c.91]

    Поскольку нейрон способен проводить импульсы (потенциалы действия) и с помощыо синапсов принимать и передавать сигналы, его специфическая роль определяется его связями с другими клетками. Поэтому для того, чтобы понять, как нейрон приобретает определенную функцию, необходимо рассмотреть, как он направляет свои длинные отростки к соответствующим местам назначения и каким образом устанавливает упорядоченные синаптические связи. Особое внимание исследователей привлекают две структуры конус роста, с помощью которого развивающийся отросток нервной клетки (аксон или дендрит) направляется к своей мишени, и синапс, который образуется, когда отросток достигнет цели. Конус роста играет центральную роль в образовании нервных связей. Описание поведения изолированного конуса роста послужит основой для последующего обсуждения развития нейронных систем. [c.133]

    После того как нейрон мигрировал в надлежащее место, он посылает аксон, который должен найти путь к нужной мищенв. Так обстоит дело и с мото-иейронами, иннервирующими конечности,-как только они заканчивают ми-градюо, у них начинают формироваться конусы роста. Эти последние проходят сквозь базальную мембрану, окружающую нервную трубку, и направляются через соединительную ткань зародыша к местам развития мышц. Конусы роста движутся по строго определенным путям об этом свидетельствует точное подобие расположения нервов на двух сторонах тела (рис. 18-72). Даже чужеродные аксоны, в экспериментальных условиях врастающие в конечность в местах нормальной иннервации, используют почти в точности тот же стандартный набор путей, по которым могут свободно продаигаться конусы роста Очевидно, эти пути определяются внутренней структурой самой конечности, но молекулярная основа такой направляющей системы остается загадкой. Видимо, по таким же предопределенным путям растут аксоны и в центральной нервной системе, где эти пути, вероятно, определяются местными особенностями глиальных клеток эмбриона. [c.141]

    Антитела к N- AM нарушают нормальный ход развития сетчатки в тканевой культуре, а нри введении в развивающийся глаз нынленка препятствуют нормальному росту аксонов нервных клеток сетчатки. Как мы увидим позже (разд. 19.7.8), это позволяет предполагать, что N- AM играет важную роль в развитии центральной нервной системы, способствуя межклеточной адгезии. Кроме того, клетки нервного гребня, формирующие периферическую нервную систему, находясь в составе нервной трубки, имеют большое количество N- AM на своей поверхности и теряют его при миграции. Но когда они агрегируют, образуя ганглии, N- AM появляется вновь (см. рис. 14-56), что указывает на важную роль N-САМ в построении ганглия. N- AM экспрессируется также во время критических стадий в развитии многих ненервных тканей, где. как нолагают. эти молекулы способствуют удержанию вместе специфических клеток. [c.521]

    Быстрый аксонный гранспорт необходим во время развития клетки для роста аксонов и дендритов, которые удлиняются путем добавления новой мембраны на их концах. Быстрый аксонный гранспорт имеется и в нейроне, закончившем рост, у которого количество мембранного материала в кончиках отростков не увеличивается. В этом случае быстрый транспорт мембран от тела клетки, называемый антерограОным, должен быть точно сбалансирован с быстрым ретрограОным [c.292]

    Очевидно, в интактном организме ФРН действует так же, как и в культуре in vitro, т. е. как фактор выживания, определяющий, будут ли клетки жить или погибнут, и как локальный стимулятор активности конусов роста, регулирующий ветвление концевых участков аксона. Первая функция имеет особое значение в период развития, а вторая важна на протяжении всей жизни однако обе они приводят к одному результату с их помощью иннервация приспосабливается к потребностям мишени. Сейчас появляется все больше данных о существовании других нейротропных факторов роста, выполняющих такие же функции по отношению к другим видам нервных клеток (см. рис. 19-70). В следующем разделе мы увидим, что такие факторы, вероятно, играют важную роль в регулирующем влиянии электрической активности на развитие систем нервных связей. [c.361]

    Развитие нервной системы удобно разделить на три этапа, которые частично перекрываются. Па первом этапе нейроны образуются в соответствии с собственной программой клеточной пролиферации и вновь образуюш,иеся клетки мигрируют из мест своего рождения , чтобы упорядоченным образом расположиться в других участках. Па втором этапе от клеток отрастают аксоны и дендриты, кончики которых продвигаются с помощью конусов роста Конусы роста перемешаются по строго определенным путям, направляемые главным образом контактными взаимодействиями с поверхностью других клеток или с компонентами внеклеточного матрикса. Пейропы, предназначенные для связи с разными мишенями, ведут себя так, как если бы они обладали разными, только им присущими особенностями (нейронная специфичность), что может выражаться в различных свойствах клеточной поверхности, позволяющих конусам роста выбирать разные пути. В конце своего пути конус роста встречается с клеткой, с которой он должен образовать синапс, и оказывается под влиянием нейротропных факторов, выделяемых этой клеткой. Эти факторы регулируют ветвление аксона и передвижение конусов роста вблизи ткани-мишени и, кроме того, когггролируют выживание нейронов, которым принадлежат конусы роста. С помощью этих двух эффектов нейротропные факторы, такие как фактор роста нервов (ФРП), регулируют плотность иннервации тканей-мишеней. Па третьем этапе развития нервной системы, который будет рассмотрен в следующем разделе, образуются синапсы, а затем схема связей уточняется с помощью механизмов, зависящих от электрической активности. [c.362]


    Общим результатом множества выполненных работ было установление того, что клетки возбудимы уже на ранних стадиях развития и что входной ток (деполяризующий клетку), переносится ионами Са +. Этот факт уже отмечался в главе 7. На ранних стадиях развития для клеток характерно, что они связаны щелевыми контактами. Как обсуждалось выше, кальциевый спайк может формироваться в теле клетки или конусе роста. У некоторых клеток такой механизм генерации спайков сохраняется до зрелости (например, у мышечных клеток). Во многих системах наблюдается переход к генерации спайков с помощью ионов как натрия, так и кальция, и в конце концов с помощью только Ма+. Это в особенности характерно для проекционных нейронов с длинными аксонами. Напротив, многие из клеток, не генерирующих спайки, на всех стадиях развития обладают невозбудимыми мембранами. Имеется и другой случай, когда некоторые клетки возбудимы на ранних стадиях развития. [c.245]

    Ганглиозиды на 3-й день постнатального развития составляют 27% от содержания во взрослом организме. Концентрация ганглиозидов за 24 последующих дня быстро увеличивается, достигая 90% от уровня взрослого животного. Спектр индивидуальных ганглиозидов также меняется при рождении преобладает моносиалоганглиозид Ощ, а затем увеличивается содержание дисиалоганглиозидов. %еличение количества ганглиозидов и изменение их состава связано с ростом аксонов и дендритов. [c.141]


Смотреть страницы где упоминается термин Аксон рост и развитие: [c.357]    [c.142]    [c.302]    [c.355]    [c.250]    [c.257]    [c.158]    [c.142]    [c.142]    [c.302]    [c.355]    [c.361]    [c.362]   
Молекулярная биология клетки Том5 (1987) -- [ c.141 , c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте