Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соматический гибрид растение

    Гибридизация соматических клеток растений позволяет объединять геномы видов, никогда не скрещивающихся в природе. Так получены соматические гибриды картофеля и томата, различных декоративных растений и др. [c.20]

Рис. 31.4. Получение соматических гибридов растений (по Н. А. Картель) Рис. 31.4. Получение соматических гибридов растений (по Н. А. Картель)

    Соматический клеточный гибрид — клетка или растение, возникшее от слияния протопластов соматических клеток, различающихся генетически. [c.498]

    Культура изолированных органов, тканей и клеток растений в настоящее время находит все большее применение в биологических исследованиях. Такие методы, как клональное микроразмножение растений, оздоровление от вирусной инфекции с помощью культуры апикальных меристем, регенерация растений из каллусных культур, находят сейчас практическое применение. Существенную помощь методы культивирования in vitro могут оказать генетикам и селекционерам в получении новых форм растений. Используя гаплоиды, незрелые или нежизнеспособные зародыши гибридов, сомаклональные варианты растений-регенерантов, биотехиологи вместе с селекционерами ускоряют и облегчают селекционный процесс. Более сложная техника манипулирования с клетками растений необходима для получения соматических гибридов слиянием протопластов или для генетической трансформации клеток и растений. [c.232]

    Регенерация растений из тканей летальных гибридов Гибридизация соматических клеток [c.185]

    Соматическая гибридизация — процесс вовлечения в генетическую рекомбинацию хромосомы и гены ядра и органелл вне сексуального цикла, например, путем слияния изолированных протопластов. Приводит к появлению гибридных клеточных линий и соматических гибридов растений. [c.467]

    Использование изолированных протопластов в селекции растений не ограничивается возможностью их индуцированного слияния и получения соматических гибридов. Изолированные протопласты способны поглощать из окружающей среды макромолекулы и органеллы, следовательно, в них можно вводить чужеродную информацию, не пересаживая ДНК или органеллы других клеток. Уже проведена успешная трансплантация изолированных ядер в протопласты петунии и табака. Вместе с тем поглощение протопластами чужеродных ядер не всегда ведет к образованию гибридов. Кроме ядер в изолированные протопласты удалось трансплантировать чужеродные хлоропласты. Из этих протопластов Карлсон 158 [c.158]

    Вторая группа методов ведет к самостоятельному, независимому от традиционных методов селекции, получению новых форм и сортов растений клеточная селекция с использованием каллусной ткани, соматическая гибридизация (слияние изолированных протопластов и получение неполовых гибридов), применение методов генной инженерии. [c.133]

    В книге изложены некоторые сведения о биологических мерах борьбы с болезнями растений. По мнению авторов, именно эти методы, а также новые приемы селекции (получение плазмид, соматических гибридов на основе слияния протопластов) займут в будущем большое место в физиологии растений при выведении высокоустойчивых продуктивных сортов. [c.7]


    Соматические клетки растений используют и для получения растительных гибридов. Клетки двух видов табака N. glau a, содержащего 24 хромосомы, и N. langsdorfii, содержащего 18 хромосом, могут сливаться, образуя гибриды с 42 хромосомами. При этом возникают каллусы, из [c.330]

    Исключительный интерес представляет гибридизация соматических клеток растений. Для получения гибридных клеток растений приготавливают протопласты путем разрущения клеточных стенок соответствующими ферментами. Слияния протопластов добиваются обработкой их полиэтиленгликолем (ПЭГ) или другими химическими препаратами. В настоящее время путем слияния протопластов получены гетерокарионы двух разных видов табака, сои и гороха, табака и моркови, а также парасексуальные гибриды некоторых других видов растений. Такие гетерокарионы восстанавливают клеточные стенки и размножаются делением. Возникающая гибридная растительная ткань (каллус) может расти на специальной среде, обогащенной растительными гормонами. После образования побегов и листьев такие соматические гибриды ири- [c.170]

    Соматический гибрид — регенерантное растение, полученное путем слияния (гибридизации) соматических клеток. [c.467]

    Особая ценность протопластов для селекции растений определяется целым рядом их свойств. Во-первых, протопласты можно получать в большом количестве и отбирать из них разновидности с полезными свойствами. Хотя сами протопласты генетически единообразны, формирующиеся из них каллусы дают растения, существенно различающиеся по внешним признакам. Во-вторых, отсутствие клеточной стенки облегчает слияние протопластов и образование гибридов. Поскольку при этом сливаются соматические, как минимум диплоидные, клетки, селекционер растений получает в свои руки мощный инструмент для отбора. В-третьих, в отсутствие клеточной стенки облегчается-захват чужеродной ДНК — фрагментов молекул или же бактериальных плазмид, в результате чего формируются растения с совершенно новым набором признаков. [c.383]

    Обсуждены разные приемы клеточно-инженерной технологии на растительных, животных н бактериальных клетках. Рассмотрены проблемы модификации протопластов и соматической гибридизации клеток растений, способы получе ния гибридов и методы идентификации и выделения ассоциаций клеток высших растений с микроорганизмами. [c.4]

    VI э т а п (1960—1975 гг.). Наиболее важным событием этого периода была разработка профессором Ноттингемского университета Э.К. Коккингом метода получения ферментативным путем изолированных протопластов из корней и плодов томата и культивирования их в контролируемых условиях. Позже в 1970 г. в той же лаборатории Пауэром и сотр. было осуществлено искусственное слияние протопластов, что открыло новый путь к созданию соматических гибридов. Еще один метод, разработанный в этот период,— это микроразмножение растений в условиях in vitro с использованием меристемной культуры. Первоначально этот метод был разработан французским ученым Ж. Морелем для получения оздоровленного посадочного материала орхидей. [c.79]

    Гибридизация соматических клеток. Следующий метод клеточной селекции — создание неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Этот метод позволяет скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым путем, вызывать слияние трех и более родительских клеток, получать асимметричные гибриды, несущие весь генный набор одного из родителей наряду с несколькими хромосомами или генами, или только органеллами и цитоплазмой другого. Гибридизация соматических клеток дает возможность не только соеди-нить в одном ядре гены далеких видов растений, но и сочетать в гибридной клетке цитоплазматические гены партнеров. [c.154]

    В настоящее время методом парасексуальной гибридизации получено большое число межвидовых, межсемейственных и межтрибных гибридов. Однако во многих случаях гибридные растения, полученные таким путем, в той или иной степени ненормальны. Примером может служить соматический гибрид между арабидопсисом и турнепсом, который является растением-монстром. Возникающие аномалии являются результатом хромосомной несбалансированности (Ю.Ю. Глеба, 1982). [c.156]

    Исследователями предпринято много попыток парасексуаль-ной гибридизации и в ряде случаев были получены гибридные растения. Ю. Ю. Глеба и К. М. Сытник (1984) приводят подробный список внутривидовых и межвидовых соматических гибридов, а также примеры гибридов межродовых и межсемейст-венных. [c.48]

    На регуляцию морфогенеза существенно влияет качество света. Показано (Л. Коппель, 1992), что морфогенный каллус образуется чаще на синем свету, чем на белом или красном. Изменения на уровне индивидуальных белков во время реализации морфогенетической программы в культуре тканей позволили говоррггь о существовании белков развития. Однако отсутствие специфических тестов на эти белки не позволяет их выяврггь. Вместе с тем при использовании гибридов, продуцирующих моноклональные антитела на мембранные белки соматических зародышей, удалось выявить полипептид с молекулярной массой 45 кДа, который встречается в ядре нескольких видов растений и возможно участвует в регуляции клеточного деления (Г. Смит и др., 1988). В настоящее время большое внимание уделяется генетическому аспекту морфогенеза, изучению соматического эмбриогенеза как генетически наследуемого признака. Роль основного двигателя процесса развития отводится дифференциальной активности генов. Предполагается, что гены, контролирующие соматический эмбриогенез, начинают экспрессироваться в критические периоды развития эмбриоидов (H.A.Моисеева, 1991). [c.176]


    Чтобы изучить судьбу ядер после поглощения, использовали очень результативную модельную систему — две светочувствительные комплементарные мутантные линии N. taba um зеленеющую и сублетальную. Гены, ответственные за светочувствительность в этой системе, являются ядерными генами. Это создает систему для скрининга соматических гибридов. У растений обоих видов изолировали протопласты и выделяли ядра. Изолированные ядра одной мутантной линии вводили в протопласты другой.. Про- ТОПЛасТЫ после введения в них пласт клеток высших растений (по ядер переносились в культуру. I, Potrykus, F. Hoffmann. 1973) [c.49]

    Разработка и применение способов получения и слияния протопластов растительных клеток, а также регенерации у них клеточной стенки в сочетании с методами культивирования и диффе-ренцировки клеток in vitro позволили конструировать рекомбинанты, минуя половой процесс, т. е. создавать соматические гибриды. Как известно, процесс слияния протопластов неспецифичен. Слияние протопластов осуществляют в жидких средах с помощью полиэтиленгликоля. Это позволяет объединять протопласты отдаленных видов растений, между которыми половая гибридизация невозможна, и таким образом расширять круг растений, вовлекаемых в гибридизацию. [c.142]

    ГОГО полового способа для введения в растение признака устойчивости к болезни. Однако сейчас стало возможным пара-сексуальное слияние культивируемых соматических клеток. Обычные растительные клетки не могут сливаться в культуре, так как их стенки препятствуют объединению протопластов. Однако с помощью смеси ферментов, разрушающих клеточные стенки, их можно растворить. Вначале для отделения одной клетки от другой используется пектиназа. Затем для разрушения стенок отдельных клеток применяют целлюлазу. Протопласты (содержимое живых клеток) можно затем собрать в иде осадка путем осторожного центрифугирования, обращаясь с ними как со свободноживущими микроорганизмами, лишенными оболочек (рис. 14.20). Если разрушение стенок производят в гипертоническом растворе, чтобы предотвратить разрыв протопластов, то изолированные ( голые ) протопласты остаются живыми. В соответствующих условиях у них может вновь образоваться стенка, они начинают делиться и затем регенерируют в целое растение. Если протопласты от двух разных видов растений смешать в присутствии индуцирующих слияние агентов, таких, как полиэтиленгликоль, то небольшая часть этих протопластов сольется друг с другом, образовав гетерокарионы (рис. 14.21), т. е. клетки, содержащие множество ядер от разных источников (рис. 14.22). При слиянии ядер могут образоваться настоящие парасексуальные гибриды. [c.436]

    Разработаны приемы освобождения растительных клеток от твердых клеточных оболочек для получения культуры изолированных протопластов, отграниченных от окружающей среды одной только плазмалеммой. Изолированные протопласты получают в результате комбинированного действия ряда ферментов (пектиназы и целлулазы), которые гидролизуют клеточные оболочки. В результате возникает возможность более детального изучения внутреннего строения клетки. Культивирование протопластов приводит в дальнейшем к ресинтезу клеточных стенок и образованию обычной культуры клеток, из которой затем можно вновь регенерировать целое растение. Изолированные протопласты представляют также большой научный и практический интерес, поскольку, изменяя соответствующим образом состав питательной среды, можно стимулировать их слияние друг с другом, осуществляя таким образом процесс так называемой соматической (неполовой) гибридизации растительных клеток. Культивируемые затем в определенных условиях гибридные протопласты могут дать начало новому растению с признаками, унаследованными от обоих родителей. Соматическая гибридизация может применяться во всех случаях, когда получение гибридов обычным (половым) путем невозможно из-за ряда физиологических или цитогенетических барьеров между растениями, например при отдаленной гибридизации. [c.10]

    В присутствии ПЭГ наблюдается сильная адгЬзия протопластов, а после удаления ПЭГ и добавления Са + — их слияние. С использованием этого метода получены гибриды разного типа, в том числе соматические гибридные клетки между протопластами растений и животными клетками, протопластами растений и водорослей. [c.43]

    Сущность этого способа гибридизации заключается в том, что в качестве родительских используются не половые клетки (гаметы), а клетки тела (сомы) растений, из которых изолируют протопласты. И в отличие от полового скрещивания, где имеет место одностороннее исключение протоплазмы, при соматической гибридизации в образовавшемся гибриде оба пйртнсра ямжт более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если [c.46]


Смотреть страницы где упоминается термин Соматический гибрид растение : [c.12]    [c.142]    [c.159]    [c.182]    [c.206]    [c.389]    [c.78]    [c.389]    [c.506]    [c.47]    [c.48]    [c.171]    [c.261]    [c.265]    [c.435]    [c.436]    [c.139]    [c.154]    [c.438]    [c.131]    [c.47]   
Молекулярная биология клетки Том5 (1987) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Гибрид соматический



© 2025 chem21.info Реклама на сайте