Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость распределение при различных режимах движения

    На интенсивность теплообмена через стенку реактора оказывает влияние режим движения потока (распределение скоростей, степень турбулентности). Вследствие отказа от гидродинамического подобия влияние режима движения будет различным в модели и образце. Поэтому удобно представить этот процесс суммарно как конвекцию теплоты и характеризовать коэффициентом теплоотдачи а. [c.465]


    Для определения размеров и места расположения застойных зон н зон проявления аномальных свойств нефти при разработке залежей необходимо знать характер распределения фактических значений градиента пластового давления [2]. В настоящее время определение фактических градиентов давления в нефтяной залежи представляется возможным лишь по картам изобар. В связи с этим следует подчеркнуть, что для решения многих практических задач разработки залежей очень важно знать распределение давления. в пласте в любой момент времени, для чего и принято строить карту изобар. Однако до сих пор карты изобар не только не нашли широкого применения при решении различных задач по контролю за разработкой нефтяных залежей, но и мало обращается внимания на улучшение точности и совершенствование методов ее построения. Как правило, карты изобар строятся по малочисленным замерам пластового давления. Между тем эти карты должны являться одним из основных документов, позволяющих уточнить физические характеристики коллектора, направление и скорости движения водо-нефтяных потоков, определить режим работы нефтяной залежи, особенности взаимодействия эксплуатационных и нагнетательных скважин и т. п. [c.84]

    Когда проба, содержащая смесь компонентов, вводится в движущийся поток газа, эти компоненты продвигаются вдоль колонки со скоростями, зависящими от их соответствующих летучестей и взаимодействия с нелетучей жидкой фазой. Во время прохождения вещества по колонке различные молекулы растворяются и повторно испаряются, причем молекулы компонента с более высокой растворимостью в жидкой фазе задерживаются (отстают) в своем движении. В случае применения жидкой фазы с соответствующими свойствами и достаточно длинной колонки в процессе распределения компонентов анализируемого вещества между газом и жидкой фазой устанавливается такой режим, при котором каж- [c.44]

    Подчеркнем, что в общем случае близость гидродинамического режима к режиму полного перемешивания нельзя отождествлять со степенью однородности распределения трассера в аппарате. Так, при турбулентном движении жидкости в трубе в любом ее сечении поток можно считать однородным вследствие его интенсивного перемешивания, обусловленного турбулентной диффузией. Однако Р-кривые трассера в условиях турбулентного потока будут существенно отличаться от кривой в на рис. 20. Более того, эти кривые будут весьма близки к кривой поршневого режима (рис. 20, а). Последнее обусловлено тем, что скорость и осредненного движения вдоль оси трубы, как правило, значительно превосходит соответствующую скорость и пульсационного движения, так что скорости движения различных порций трассера вдоль оси трубы можно считать примерно одинаковыми. Соотношение между величинами и я и можно и в общем случае использовать для оценки близости гидродинамического режима к идеальным режимам полного перемешивания и вытеснения. Так, соотношение и и является необходимым условием осуществления поршневого режима, а гипотетический режим, в котором (а=1, 2, 3), можно, по-видимому, отождествить с режимом полного перемешивания. [c.166]


    Поскольку число Прандтля характеризует относительное соотношение профилей скоростей и концентраций, то следует ожидать, что влияние этого соотношения на процесс массопередачи должно меняться в зависимости от гидродинамической обстановки процесса, т. е. должен меняться показатель степени при числе Прандтля. При наиболее равномерном распределении жидкости и газа в двухфазном потоке в условиях развитой свободной турбулентности в соответствии со структурой уравнений (VI.45) и (VI.46) показатель степени п должен достигать максимального значения, равного единице. При снижении турбулизации потоков показатель степени п при числе Прандтля должен уменьшаться, становясь в пределе, когда движение прекратится, равным нулю. В последнем случае понятие о соотношении профилей скоростей и концентраций теряет свой смысл. Практически в соответствии с обычными гидродинамическими режимами проведения диффузионных процессов показатель степени п при числе Прандтля должен меняться в пределах от 1/3 (ламинарный режим), если условно допустить применение этого термина к двухфазному потоку, до 1 (режим развитой свободной турбулентности). Таким образом, для различных гидродинамических режимов вид уравнений (VI.45) может быть уточнен. [c.197]

    Дина.мическая характеристика аппарата непрерывной полимеризации АНП-5,5 исследовалась в работе [11]. Проверялось предположение о значительной неравномерности распределения продолжительности пребывания различных частей реакционной массы в указанном аппарате. Оказалось, что дикатор (двуокись титана) появлялся на выходе из аппарата значительно раньше, чем было рассчитано,— через 10,5 ч после начала дозирования. Это объяснялось тем, что профиль скоростей течения реакционной среды в аппарате НП имеет параболический характер даже при ламинарном движении среды. Причем скорость движения реакционной среды в центре поперечного сечения аппарата в 2 раза больше средней скорости всей массы полимера. Режим движения в первой секции трубы АНП-5,6 сильно отличается от теоретического, характерного для аппаратов типа адеального вытеснения с ламинарным движением среды. Это обусловлено наличием значительной зоны конвективного перемешивания, возникающей вследствие того, что температура реакционной среды зна-чительно выше температуры поступающего лактама. Для выравнивания профиля скоростей в трубе АНП-5,5 предложено [11] применять гидравлические вытеснители, в качестве которых рекомендуются двухконусные вставки с разными углами при вершине верхнего и нижнего конусав. Подобного рода вставки несколько выравиивают продолжительность пребывания отдельных частей реакционной массы в аппарате, однако кардинального решения эти предложения не дают. Делались попытки математического описания процесса полимеризации капролактама в аппаратах вертикального типа [12, 13]. В работе [12] для описания процесса исПоль- [c.87]

    Были сделаны попытки, используя основной элемент конструкции и принцип работы тарелок КРИМЗ (прямоугольные отверстия с лопатками и чередование тарелок с противоположным движением потоков), улучшить их показатели применительно к различным технологическим системам. Так, разработана тарельчатая насадка [25] со спиральным движением фаз (рис. 14). Проходное сечение такой насадкн может быть достаточно большим, однако скорость раствора по сечению колонны меняется очень сильно, и при большом диаметре равномерное распределение фаз по сечению и объему затруднено. Режим работы колонны с такой насадкой при экстракции напоминает смесительно-отстойный. [c.29]

    Казалось бы, что первая задача легко выполнима. Среднее время пребывания в реакционной зоне (время контакта) равно частному от деления свободного объема реакционной зоны на объемную скорость потока. Однако не все молекулы реагирующего потока пребывают в зоне реакции одинаково долго. Различные части турбулентного потока, движущегося сквозь зерненый слой катализатора, обладают разными скоростями. Продольное перемешивание потока турбулентными вихрями и образование застойных зон в промежутках между твердыми частицзхми приводят к тому, что молекулы реагентов, вошедшие в реактор с потоком, достигают выхода через различные промежутки времени, более или менее отличающиеся от среднего значения. Время пребывания в реакционной зоне (время контакта) является, таким образом, случайной величиной, характеризуемой некоторой дифференциальной функцией распределения ф(т). Вид функции ф(т) определяет гидродинамический режим реактора. Чем большую роль в движении потока играют беспорядочные турбулентные пульсации, тем более размазана функция ф(т). Предельному случаю, когда турбулентное перемешивание отсутствует и время пребывания одинаково для всех молекул, отвечает режим идеального вытеснения. Другой предельный режим — идеального смешения — возникает, когда интенсивное перемешивание потока (чаще всего принудительное) приводит к выравниванию состава потока по всему реактору в этом случае для каждой молекулы вероятность того, что она покинет реактор, не зависит от времени, уже проведенного ею в реакционной зоне. Режим, промежуточный между [c.153]



Основные процессы и аппараты Изд10 (2004) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение по скоростям



© 2025 chem21.info Реклама на сайте