Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы диссоциация молекул

    Вычислить разность относительных электро-отрицательностей атомов для связей Н—О и О—Г (где Г — это С1, Вг, I) в соединениях НОГ и определить а) какая из связей в каждой молекуле характеризуется большей степенью ионности б) каков характер диссоциации молекул в водном растворе. [c.60]

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]


    Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы (э. д. с.) гальванической цепи (см. ниже) и др. [c.395]

    В водных растворах диссоциация молекул растворимых веществ на ионы или разрушение кристаллических решеток до образования ионов в основном обеспечивается высокими диэлектрическими свойствами растворителя, а в расплавляемых системах преимущественно интенсивностью теплового движения, высокими температурами. Таким образом, в расплавляемых системах интенсивность теплового движения выполняет функции растворителя, вызывает диссоциацию, как бы изменяет концентрацию и т- д. [c.101]

    Газовое пламя состоит из двух резко различающихся частей внутренний конус, образующийся непосредственно у выхода из горелки, является зоной неравновесного горения. здесь происходят испарение распыленного раствора, диссоциация молекул, образование радикалов. Внешняя зова пламени является зоной равновесного термического возбуждения, где происходит свечение составных частей раствора и радикалов (обычно ОН, СН, С2, иногда галоидных соединений щелочноземельных элементов и др., если галоидные соединения присутствуют в растворе). Чем выше температура пламени, тем большее число элемен- [c.48]

    Наличие экстремальных, максимальных или минимальных точек на кривых равновесия, термодинамическая теория растворов объясняет ассоциацией или диссоциацией молекул одного из жидких компонентов раствора, и это вполне оправдывается опытом. Если проанализировать, какие пары жидкостей образуют растворы, характеризующиеся максимумом суммарной упругости паров при постоянной температуре системы, то окажется, что большинство известных пар таких компонентов представляют смеси жидкостей, содержащих гидроксильную группу смешанных с жидкостями, свободными от гидроксильных групп. Такого рода смеси имеют тенденцию к ассоциации. С другой стороны, водные растворы галоидоводородных кислот, характеризующиеся явно выраженной диссоциацией, относятся к категории растворов, у которых изотермические кривые кипения и конденсации имеют точку минимума (фиг. 4). [c.13]


    V — число ионов при диссоциации молекулы р и Ро— плотности соответственно раствора и растворителя. [c.399]

    Этот процесс можно рассматривать как диссоциацию молекулы ЗОа на две молекулы продуктов реакции, так как концентрация воды практически постоянна. В таком случае должна соблюдаться нейтральность раствора, поэтому концентрации НЗО и Н+ должны быть одинаковы во всех точках и оба иона будут диффундировать с одной и той же скоростью (о диффузии ионов см. раздел 1-2). [c.131]

    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

    Эти отклонения нельзя было объяснить ничем иным, кроме как увеличением числа частиц растворенного вещества, т. е. диссоциацией молекул электролита в растворе иа более мелкие частицы. [c.247]

    В растворах слабых электролитов диссоциация молекул электролита на ионы увеличивает объем раствора. Поэтому повышение давления в соответствии с принципом смещения подвижного равновесия Ле-Шателье — Брауна должно уменьшать степень диссоциации электролита и, следовательно, электропроводность. Заметное влия- [c.255]

    Еще в начале прошлого века, излагая свою теорию электролиза, профессор Юрьевского (ныне Тартуского) университета Ф. И. Гротгус (1805) высказал мнение, что в растворе под действием тока растворенное вещество распадается на противоположно заряженные частишь, которые нейтрализуются на электродах. Позже Фарадей (1833) назвал подобные заряженные частицы ионами (от греч. ион — идущий). В 1878 г. петербургский профессор Р. Э. Ленц, исследуя электропроводность растворов, высказал предположение, что молекулы веществ уже при растворении могут распадаться на ионы. Все эти и подобные высказывания оставались предположениями и тогда, когда шведский ученый Аррениус (1887) занимался исследованиями электропроводности растворов. Закономерности в изменениях эквивалентной электропроводности с концентрацией указывали на то, что в растворе молекулы электролита, очевидно, распадаются на ионы. Из хода кривых на рис. 53 вытекает, что сначала распадается часть электролита, а по мере разбавления раствора диссоциация увеличивается, что и ведет к росту X. [c.164]

    Рассмотрим подробнее условия появления в растворе ионов., До создания Аррениусом теории электролитической диссоциации (1883 г.) господствовало мнение, что диссоциация молекул на ионы происходит только под действием электрического поля. В настоящее время достоверно известно, что процесс образования ионов идет самопроизвольно, так как при протекании соответствующей реакции, например [c.308]

    Очевидно, однако, что приведенный случай отнюдь не является общим. Наоборот, мы значительно чаще встречаемся на практике с растворами, образованными из компонентов, не обладающих сходными свойствами. Тогда в растворах молекулы компонентов будут находиться уже в условиях, отличных от условий существования их в чистом компоненте, и вследствие этого будут обладать иными свойствами. К этому весьма часто присоединяется более интенсивное влияние таких факторов, как образование соединений между молекулами компонентов, частичный или полный распад ассоциированных комплексов, содержащихся в чистых компонентах, и диссоциация молекул компонентов на ионы. [c.306]

    Теория электролитической диссоциации слабых электролитов учитывает взаимодействие каждой данной пары ионов между собой и рассматривает процесс диссоциации молекулы и образования ее из ионов. Теория же сильных электролитов должна учитывать совокупность взаимодействия каждого данного иона со всеми остальными окружающими его ионами того и другого знака. Так как одноименно заряженные ионы взаимно отталкиваются, а разноименно заряженные — взаимно притягиваются, то каждый ион в растворе окружается ближе к нему расположенными ионами противоположного знака, в то время как одноименно заряженные ионы располагаются в среднем дальше от него (вследствие этого притяжение преобладает над отталкиванием). [c.392]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]


    Действие растворителя на растворенное вещество настолько велико, что может вызывать электролитическую диссоциацию веществ, не обладающих ионным типом связи. Например, полярные молекулы хлороводорода, растворяясь в воде, разрываются ее молекулами на ионы. При растворении хлороводорода в бензоле, являющемся менее полярным растворителем, чем вода, диссоциации молекул не происходит. Поэтому раствор хлороводорода (кислота) в воде проводит электрический ток, а в бензоле нет. [c.69]

    Водородный показатель pH. Различные формы растворенного вещества (ионы, недиссоциированные молекулы) находятся в растворе в равновесии друг с другом скорость диссоциации молекул на ионы равна скорости образования молекул из ионов. Рассмотрим это на примере раствора уксусной кислоты в воде. Процесс диссо- [c.73]

    Таким образом, удельная электропроводность и пропорциональна концентрации электролита в растворе. Однако на опыте наблюдаются отклонения от пропорциональности, которые связаны с взаимодействием между ионами в растворе. В растворах слабых электролитов химическое взаимодействие приводит к неполной диссоциации молекул на ионы в растворах сильных (полностью диссоциированных) электролитов наблюдается электростатическое взаимодействие между ионами. Для того, чтобы провести оценку данных по электропроводности независимо от концентрации носителей заряда и их взаимодействия, введем понятие эквивалентной электропроводности X это электропроводность, отнесенная к постоянному числу носителей заряда К=% с. в зависимости от способа выражения концентра-дии (г-экв./мл или моль/мл) ее называют эквивалентной или молярной электропроводностью. [c.328]

    Значит, при диссоциации молекулы фосфористой кислоты отщепляются не все три, а только два иона водорода. Кислота двухосновная. Учитывая, что отщепляться в водном растворе могут только атомы водорода, связанные с центральным атомом через кислород, напишем структурную формулу [c.152]

    Закон Бера соблюдается не всегда. Отклонения от него свидетельствуют о возможных межмолекулярных взаимодействиях (ассоциация, сольватация, диссоциация молекул, комплексообразование и т. д.), протекающих в данной среде при изменении концентрации поглощающего вещества. Поэтому при измерении спектров поглощения в растворах различной концентрации предварительно проверяют выполнение закона Бера. Для этого исследуют зависимость оптической плотности D от концентрации С (при постоянных X и I). При соблюдении закона эта зависимость выражается прямой линией в координатах D и С. [c.125]

    Известны и многие другие тепловые эффекты теплоты полиморфных и агрегатных превращений (см. гл. IV), образования ионов в водных растворах, ионизации газов, разрыва связей и диссоциации молекул в газообразном состоянии, адсорбции и др. [c.50]

    Свойства коллоидных растворов зависят не только от степени их дисперсности, но и от их природы. Как показали многочисленные исследования, ца границе раздела между дисперсионной средой и частицами дисперсной фазы возникает так называемый двойной электрический слой, который играет важную роль в агрегативной устойчивости лиофобных систем. Этот слой может возникать либо в результате адсорбции ионов определенного знака (потенциалопределяющие ионы) на поверхности коллоидных частиц, либо вследствие электролитической диссоциации молекул поверхностного слоя самих частиц. [c.173]

    Раствор бромной меди в ацетоне содержит молекулы СиВг2. В таком растворе диссоциация молекул СиВгг на ионы не идет, так как молекулы ацетона неполярны. Отсутствие в растворе заряженных частиц объясняет, почему этот раствор не проводит электрический ток. При добавлении воды начинается диссоциация бромной [c.209]

    Диссоциация молекулы полиарилэтана по центральной С—С-связи становится возможной после перехода молекулы в возбужденное состояние. Условием перехода атомов в связи С—С в возбужденное колебательное состояние является образование ассоциатов из молекул полиарилэтана или образование комплексов полиарилэтана с другими молекулами, присутствующими в растворе. [c.41]

    Существенное влияние на степень диссоциации полиарилэтанов оказывает симметрия молекулы. Отклонение от симметрии приводит к резкому снижению степени диссоциации молекулы, что свидетельствует об участии в разрыве центральной связи резонансных эффектов. Так, например, соединение (СбН5)дС—Ы(СбН4—ОСНз)а не диссоциирует в растворах [39]. [c.42]

    В водных растворах мыл [СНд—(СНа) —СОО]"Ме+ или других органических соединений, имеющих характер солей (соли алкилсульфокислот, арилсульфокислот, кислых сложных эфиров серной кислоты, четвертичных аммонийных солей), происходит значительная диссоциация молекул. Функциональные группы, имеющие ионные заряды, гидратируются в значительно большей степени, а силы электростатитического взаимодействия между ионами с противоположными зарядами намного увеличивают их гидрофильный характер. [c.334]

    Химические реакции всегда связаны с разнообразными физическими процессами теплопередачей, поглощением или излуче-ниед электромагнитных колебаний (свет), электрическими явлениями и др. Так, смесь веществ, в которой протекает какая-либо химическая реакция, выделяет энергию во внешнюю среду в форме теплоты или поглощает ее извне. Поглощение света фотографической пленкой вызывает в ней химический процесс образования скрытого изображения. Химические реакции, протекающие в аккумуляторах между электродами и раствором, являются причино11 возникновения электрического тока. При повышении температуры вещества увеличивается интенсивность колебательных движении внутри молекул, и связь между атомами в молекуле ослабляется после перехода известной критической границы происходит диссоциация молекулы или взаимодействие ее с другими молекулами при столкновении, т. е. химический процесс. Число аналогичных примеров легко увеличить. Во всех случаях имее место тесная связь физических и химических явлений, их взаимодействие. [c.11]

    Концентрацпю ионов водорода в растворе после добавления соли обозначим через х. Тогда концентрация недиссощшрованиых молекул кислота будет равна 0.2 — х. Концентрация же ионов НСОО будет слагаться из двух величин из концентрации, создаваемой диссоциацией молекул кислоты, и концентрации, обусловленной присутствием в растворе соли. Первая из этих вели чин равна х, а вторая — 0.1 моль/л общая концентрация ионов НСОО- равна, следовательно, 0,1 + х. Подставнв значення концентраций в выражение для коистанты диссоциации муравьином кислоты, получим  [c.126]

    Щавелевая кислота, (СООН)2,-не вполне безвредное вещество, содержащееся в листьях щавеля и ревеня. Вычислите объем 0,114 н. раствора NaOH, требуемый для полной нейтрализации 0,273 г щавелевой кислоты, если ее грамм-эквивалент равен 45,0 г. Если это значение грамм-эквивалента верно, что оно указывает относительно числа атомов водорода, которые отщепляются при диссоциации молекулы щавелевой кислоты  [c.109]

    Хойслер 1958 г.), предположив, что поверхностная концентрация ионов ОН в кислых растворах может быть значительно больше объемной вследствие диссоциации молекул воды, адсорбированных на поверхности железа, представил процесс растворения железа в кислых растворах протекающим через следующие стадии  [c.227]

    Установив, что значения коэффициентов I, полученные измерением понижения точки отвердевания, совпадают с подсчитанными им самим на основании его данных по электропроводности, т. е. что растворы электролитов ведут себя аналогично и при пропускании электрическаго тока, и в его отсутствие, Аррениус пришел к выводу, что диссоциация молекул растворенных электролитов на ионы происходит не под действием тока (как считали в то время), а уже при самом растворении, независимо от того, пропускаТот через раствор электрический ток или нет. Такой распад молекул электролитов на ионы в среде растворителя получил название электролитической диссоциации (или ионизации). Благодаря этому процессу в растворе увеличивается число частиц, в результате чего коэффициент г принимает значения, большие единицы. [c.247]

    Гипотеза электролитической диссоциации. В 1805 г. литовский ученый Ф. X. Гроттус, излагая свою теорию электролиза, высказал мнение, что частицы растворенных веществ состоят из положительной и отрицательной частей и под действием электрического поля закономерно, ориентируются, располагаясь цепочками, в которых положительнйя часть каждой частицы направлена к катоду, а отрицательная — ю, аноду. Под действием тока ближайг шие к электродам частицы разрываются и отдают соответствующие ионы электродам остающиеся части их вступают в обмен со следующими частицами. С теми или другими изменениями эти взгляды были общепринятыми до 80-х годов прошлого века. Н. Н. Каяндер установил (1881), что между химической активностью водных растворов кислот и их электропроводностью обнаруживается параллелизм. Он показал также, что кислоты обладают наибольшей химической активностью и наибольшей молярной электропроводностью в наиболее разбавленных растворах и что влияние природы растворителя и на химическую энергию тел и на электропроводность их растворов является аналогичным. Каяндер высказал предположение о возможности диссоциации молекул кислот в растворе, говоря, что в данном объеме раствора кислоты количество частиц, получивших способность обмена (назовем их хоть разомкнутыми частицами), пропорционально количеству прибавленного растворителя и что реагируют только такие разомкнутые частицы .  [c.381]

    Развитию гипотезы электролитической диссоциации способствовали работы И. А. Каблукова, Нернста, Джонса и др. Особенно большое значение в формировании правильного представления о взаимодействии между частицами в растворах электролитов имели работы Каблукова. Основываясь в значительной степени на обихей теории растворов Менделеева, он утверждал, что ионы могут вступать во взаимодействие с водой, образуя гидраты переменного состава). Каблуков в своей докторской диссертации (1891) писал По нашему, вода, разлагая частицы растворенного тела, входит с ионами в непрочные соединения, по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекулы галоидов при высокой температуре . Дальнейшее развитие науки полностью подтвердило правильность этого вывода И. А. Каблукова. [c.382]

    Для растворов слабых электролитов i равно отно1цению фактического числа частиц растворенного вещества в растворе к тому числу частиц, которое было бы при отсутствии диссоциации. Отношение это можно рассчитать следующим образом. Если до диссоциации в растворе находилось N молекул растворенного вещества и степень диссоциации его а, то число диссоциированных молекул равно aN, а число недиссоциированных равно (1—a)7V. Пусть каждая молекула образует при диссоциации k ионов, тогда при диссоциации aN молекул должно образоваться aNk ионов. Следовательно, общее число частиц в растворе (недиссоциированных молекул и ионов) равно  [c.390]

    Активность выражает, так сказать, активную концентрацию электролита в растворе, отражая суммарно и влияние неполной диссоциации молекул (если она имеет место), и влияние взаимного притяжения разноименных ионов, и влияние гидрагации ионов, [c.394]

    Существует несколько теорий, объясняющих механизм возникновения скачка потенциала на границе раствор —металл. Наиболее современной является сольватацнонная теория электродного потенциала, основы которой высказаны Л. В. Писаржевским в 1912—1914 гг., затем развиты Н. А. Изгарышевым и дополнены работами Герни (1932). Согласно этой теории скачок потенциала на границе раствор —металл обусловлен двумя процессами 1) диссоциацией атомов металла на ионы и электроны внутри металла 2) сольватацией ионов металла, находящихся на поверхности металла, при соприкосновении его с раствором, содержащим молекулы растворителя Ь. Обе стадии и общая реакция на границе раствор — металл могут быть записаны в следующем виде  [c.470]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Таким образом, металл в водном растворе взаимодействует с кислотой, если сумма энергии ионизации мстал/1а н энергии гидратации водородного нона меиьн/е суммы энергии гидратации металлического нона, энерги иоин аиин водорода и половины энерпл диссоциации молекулы водорода. [c.201]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Гетерогенный процесс состоит из нескольких стадий доставки вещества из раствора к поверхности твердого тела, собственно химической реакции на поверхности твердого тела и отвода продуктов реакции от поверхности в глубь раствора. Могут быть и другие стадии. Так, например, дополнительное химическое превращение исходного сеп1.ества в растворе ассоциация или диссоциация молекул, изменение состава компонента и т. п. или дополнительные химические превращения продукта реакции у поверхности твердого тела рекомбинация, димеризация, нротонизация и т. п. Каждая из этих стадий может быть лимитирующей, т. е. иметь самую малую константу скорости и оказывать наибольшее сопротивление процессу. [c.366]

    Электропроводность растворов обусловлена присутствием в них ионов, образующихся при диссоциации растворенных веществ. В водном растворе под действием молекул воды хлористый водород хорошо диссоциирует на ионы, поэтому такой раствор обладает значительной электропроводностью. Жидкий хлористый водород не электро-проводен, т. е. в нем пра тически не происходит диссоциации молекул. [c.210]


Смотреть страницы где упоминается термин Растворы диссоциация молекул: [c.214]    [c.47]    [c.402]    [c.176]    [c.166]    [c.391]    [c.464]    [c.120]   
Аналитическая химия (1973) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация двухатомных молекул в растворах

Ионизация и диссоциация органических молекул в растворе, константы

Поверхностно-активные вещества диссоциация молекул в раствор



© 2025 chem21.info Реклама на сайте